{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "KlNh9oRdS1vG"
},
"source": [
"# Analysis of CTD data from Argo profiling floats deployed by the OCEAN:ICE project"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For an interactive version of this page please visit the Google Colab: \n",
"[ Open in Google Colab ](https://colab.research.google.com/drive/1Hz6L3aJ_CIG3ljUVREGStYE0VlYR22ux)
\n",
"(To open link in new tab press Ctrl + click)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"OCEAN:ICE employs a cross-disciplinary, combined observational and modelling approach to achieve its scientific objectives. It melds new in situ measurements, targeted at existing spatial and knowledge gaps, with remote sensed EOs together with a hierarchy of modelling approaches. An ambitious set of quasi-simultaneous circumpolar observations is planned to observe the pathways, properties and high-resolution variability of water masses associated with Antarctic ice-ocean interaction over periods of various years. Several arrays of Argo profiling floats are been deployed as part of this strategy. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The tool uses the following product:\n",
"\n",
"- OCEAN:ICE's ERDDAP (https://er1.s4oceanice.eu/erddap/tabledap/ARGO_FLOATS_OCEANICE.html)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "wC6giR_d0il2",
"tags": [
"remove-cell"
]
},
"outputs": [],
"source": [
"%%capture\n",
"# install and import libraries\n",
"!pip install netCDF4 cartopy seawater ipympl\n",
"\n",
"%matplotlib ipympl\n",
"import pandas as pd\n",
"import numpy as np\n",
"import xarray as xr\n",
"import matplotlib as mpl\n",
"import matplotlib.cm as cm\n",
"import seawater as sw\n",
"import cartopy.crs as ccrs\n",
"import cartopy\n",
"import pandas as pd\n",
"import ipywidgets as widgets\n",
"import cartopy.feature as cfeature\n",
"import matplotlib.colors as mcolors\n",
"from matplotlib import pyplot as plt\n",
"from matplotlib.backend_bases import PickEvent\n",
"from IPython.display import HTML, display\n",
"import warnings\n",
"\n",
"warnings.filterwarnings('ignore')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "S0w_gtjayK4w"
},
"source": [
"## Mapping OCEAN:ICE deployed Argo Floats"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "kdBuMtnOOWqQ"
},
"source": [
"In the next code cell, a map of the Antarctic region will be generated using the Esri Antarctic Basemap projection. The map will display ARGO platforms' sampling locations within the specified time range, marked with unique colors to distinguish each platform. By zooming on the map it is possible to see the trajectory for each Argo platform. The data is fetched from the ERDDAP server, and each platform's sampling points are represented by circle markers. A dropdown menu allows you to select different platforms, updating the current platform value accordingly. Additionally, a legend is displayed to indicate the color associated with each platform."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 631,
"referenced_widgets": [
"c8dc25c981bb4b018bdc228ddc635a03",
"9ab3a3db101540d4aa4793e58478d3d3",
"f6bc75a852da4c97bd790a3ccd052686",
"d8f588e4734b475b8cd5c210d8f52db1",
"6cdcb0bc30d94a59982b8eeb716ef692",
"3e23bfbb6b0d4bd9a6178b24baddb8c6",
"f007ba80b06d4fdd96ad940e0c858ca5",
"d4ca6d2fcaae4b8dab00ef165d38bbf3",
"9ddd923df0a642b4b28f1ed215a430cb",
"6f24d35657d547b0b3875d0c8f8e7107",
"20cc8ff059274d9c94246415c65c67b7",
"fc2449a715034fb1a661cc296533dc9c",
"debf2b10e776477f8958d57b6f1de222",
"7035b4b2a7db4fc5b1a954261aeefc60",
"801d6b52b8044372960415611afd4588",
"7a047a083a55483ab1a50829e99721eb",
"a64762342a1a4c228320ade4340f1b27",
"48c6b1dd813448899ee23897eb66ad53",
"61fef70970b4427c84ffe897ce649479",
"7cd4a6cc52924c61a33b328da7561a45",
"0e834404e7d6432b9b7b338867758626",
"d013e4e6e1864ec9a119e08bfea5d089",
"5ffa7dc54b054c9b9503639573f1e3b2",
"ae42d3ccd0c146ea813c2a928c29eb1d",
"eee2bffcd227471f8f7a548235558a81",
"320f1c8991fa445580c071676636d98c",
"61b023af19ad410d93fc0ff683cb7fa3",
"88ff4cb507a14de8bc557fe32d64dd1e",
"bd432ce34a55487597436083000f87c7",
"81addbd4bf754568a9c11828d490b1b9",
"2b8472b0b1094f238d4bf08603c4452d",
"d4e3fd242cd34ea8a5212cd9898f8edc",
"38d4a392434f4b0987d3143dd8aca3d9",
"e7ce932b30f24891b6f69187e8c3002c",
"211d2950ccd04beb909ae5455de4abf5",
"42900cacdc0741dfa153339e3b885251",
"2174f6927e4f44ac93f68dffad8ca91e",
"06a592f16aae45f0a74725ab6bac402e",
"42a1718fae0d4088b4b7e04dbf96cba2",
"f1c06a1380824b10a1a9d3f1e166e1a0",
"1176e6a64b5c454eaaa31e41cab6a2ff",
"54e0b92333dd44d6a95e4e45f7b82877",
"0796f85bc9fa458ab76149b426c16e27",
"b6fc903e232943b68595f794cbecafac",
"7cb7ab6ac94c45f6b890ee9d64a9dc87",
"4b5d007145944c1293214a559e1ce384",
"91f95d08e7c24db4ab154197b4b30f70",
"208a232805ef430a85884ced52e810f0",
"983339620b6f49ffbd75c53d759acaa4",
"5967f80e21964bf182b7cedbe1d67020",
"3a884089da4d4e15ab459148ece95704",
"e228775990054713a518993fe3781330",
"1cc586c072dc4f3fbfc738540e98c467",
"56e8c02bad58476abc5a91b5fe368814",
"f05c5ae4e00c47b7bf220fe003fc0e39",
"30babf8c7ff14ce98ecd19100b36a2ef",
"a98a917fe0e24ff1849d80bbbb5bf859",
"043d60be66bf4d719f2c32ec47c6200d",
"445983046dd940bd9401b9dab604807b",
"a85aa12023bd47ffb99347cbf11d6cbb",
"359378a6ae844e6391ee8247110e6517",
"4d76258a560d4f1686b0221110680a95",
"f47ca0980b104383a4792b491fd990fa",
"79c8856078ae43aaadcfcedc50735123",
"57b3c65da3bf4f37801ec5d6d6a2cabd",
"b02a0d7815474c188354e6823ee7a621",
"85f1891fbd0d4c10889d6b64c93bb7ae",
"c2204f270c16475891073d4c28f8ce9c",
"325a0d40de8e4de5bccfc51f278579bc",
"915ca846a3bb4127b4bf21234b64b87f",
"42e15457609849dca2f812b1a42a2d6e",
"aaea9cecec0b424ba190d366f9c7ce27",
"fd5f75e871ca475fbf888324eb5eb2ec",
"0a69f1bd59cd491183b16ffd3d3f0bbf",
"41c797c187a343188d0fead05c398e07",
"27338004c6594d9fb5b79e45a3d0b724",
"b038c8a11da941eaa942fb66b6960759",
"4da9fcbc7f794285847c7a65fd577edc",
"21407eff7625478788d5824380c7c765",
"2d2ffe002c2241a68c138019cba6ab07",
"8ca89fd0c02d4e5db5f7e1297bee806c",
"7febf1cd2aba4da5b2ba7bd19b8342ff",
"4695895c3cf74e7698fe7bf34245ce23",
"2bda628ce2fb4acdac824c3f2dfcdc61",
"22fdf19edf6c4bcfbd143a3cc40566ea",
"092edf0590ad4fbfba929d0b8aae8600",
"f520cec6270d4a7794cd67d0ea4b5032",
"04cfd47efcc245fbb7355c335ac095c5",
"ca1bec7d5faf44b3af8eabb1210a765f",
"fdf937dde19141f49c5353cd0d49525b",
"bc2ef06bb56e418f953b2dec80a67773",
"be39dca535d444a1946fb506ac900ca3",
"42a3adec091246ab96b1d489bfc8a518",
"a5a17d777d8340e581a271c9fff7a6e2",
"6e89493593154f259e03840581580257",
"eeb74034f5144f41941bee99c81ec17a"
]
},
"id": "wzpZla0Qc-qZ",
"outputId": "44077186-fcb2-4d96-e654-3b047857ce9c",
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c8dc25c981bb4b018bdc228ddc635a03",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Map(center=[-90, 0], controls=(ZoomControl(options=['position', 'zoom_in_text', 'zoom_in_title', 'zoom_out_tex…"
]
},
"metadata": {
"application/vnd.jupyter.widget-view+json": {
"colab": {
"custom_widget_manager": {
"url": "https://ssl.gstatic.com/colaboratory-static/widgets/colab-cdn-widget-manager/2b70e893a8ba7c0f/manager.min.js"
}
}
}
},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"
<xarray.Dataset> Size: 80kB\n", "Dimensions: (index: 904)\n", "Coordinates:\n", " * index (index) int64 7kB 0 1 2 3 4 5 6 ... 898 899 900 901 902 903\n", "Data variables:\n", " PLATFORMCODE (index) int64 7kB 5907087 5907087 5907087 ... 5907087 5907087\n", " cycle_number (index) int64 7kB 2 2 2 2 2 2 2 2 ... 10 10 10 10 10 10 10 10\n", " time (index) object 7kB '2024-01-10T05:39:20Z' ... '2024-03-07T1...\n", " latitude (index) float64 7kB -68.61 -68.61 -68.61 ... -68.12 -68.12\n", " longitude (index) float64 7kB 73.09 73.09 73.09 ... 71.95 71.95 71.95\n", " PRESS (index) float64 7kB 8.0 9.0 9.9 15.5 ... 570.9 574.2 575.6\n", " TEMP (index) float64 7kB 1.717 1.816 1.727 ... -1.939 -1.938 -1.939\n", " TEMP_QC (index) int64 7kB 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1\n", " PSAL (index) float64 7kB 33.73 33.91 33.94 ... 34.52 34.52 34.52\n", " PSAL_QC (index) int64 7kB 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1