{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "cYRMal2svoW6" }, "source": [ "# **Southern Ocean Mixed Layer Depth Estimation from ARGO Floats — Regression Method of Courtois et al. (2017)** #" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For an interactive version of this page please visit the Google Colab: \n", "[ Open in Google Colab ](https://colab.research.google.com/drive/19G3F5qUWNLjbLBuTkznv4jhKzncPuTga)
\n", "(To open link in new tab press Ctrl + click)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Alternatively this notebook can be opened with Binder by following the link:\n", "[Southern Ocean Mixed Layer Depth Estimation from ARGO Floats — Regression Method of Courtois et al. (2017)](https://mybinder.org/v2/gh/s4oceanice/literacy.s4oceanice/main?urlpath=%2Fdoc%2Ftree%2Fnotebooks_binder%2Foceanice_mixed_layer_depth.ipynb)" ] }, { "cell_type": "markdown", "metadata": { "id": "zKHwIUj4vn7k" }, "source": [ "**Purpose**\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "1kmpeJi28JOV" }, "source": [ "The Mixed Layer Depth (MLD) marks the upper ocean layer that is stirred and blended by winds, waves, and currents. It is a key property for many reasons:\n", "\n", "1. **Climate & Heat Storage**: Controls heat and gas exchange between ocean and atmosphere.\n", "\n", "2. **Marine Life**: Influences nutrient supply and light availability for phytoplankton growth.\n", "\n", "3. **Carbon Cycle**: Regulates CO₂ uptake and long-term storage in the ocean interior.\n", "\n", "4. **Ocean Circulation**: Contributes to water mass formation and global current systems.\n", "\n", "In the Southern Ocean, MLD variability is central to understanding climate change impacts and ecosystem dynamics.\n", "\n", "This notebook provides interactive tools to visualize and analyze MLD estimates from ARGO profiling floats. Users can:\n", "\n", "* Select specific float platforms and time periods.\n", "\n", "* View temperature–depth profiles and identify the MLD using a regression-based method.\n", "\n", "* Map monthly average MLDs across multiple floats.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "MDRIS4Ii8DJ0" }, "source": [ "**Data sources**" ] }, { "cell_type": "markdown", "metadata": { "id": "4GscmbGR8Jx9" }, "source": [ "**ARGO floats** are autonomous, free-drifting instruments used for large-scale ocean monitoring. Each float:\n", "\n", "* Cycles vertically from the surface to depths of up to ~2,000 m.\n", "\n", "* Measures temperature, salinity, and sometimes biogeochemical parameters.\n", "\n", "* Transmits data via satellite when at the surface.\n", "\n", "* Operates for 4–5 years, collecting hundreds of profiles during its lifetime.\n", "\n", "The global ARGO program maintains a network of ~4,000 floats worldwide. In the **Southern Ocean**, these floats provide year-round coverage in otherwise inaccessible regions, making them essential for climate and oceanographic research.\n", "\n", "The dataset used in this notebook comes from https://er1.s4oceanice.eu/erddap/tabledap/ARGO_FLOATS_OCEANICE.html. It includes time, latitude, longitude, pressure (converted to depth in meters), and temperature profiles. The analysis here focuses on the period **December 2023 – March 2024**, but users can adjust the query to other intervals." ] }, { "cell_type": "markdown", "metadata": { "id": "dhgXKqHgvw_e" }, "source": [ "**Instructions to use this Notebook**" ] }, { "cell_type": "markdown", "metadata": { "id": "DpjFwRRfv2c-" }, "source": [ "Run each code cell in order by clicking the **Play button** (▶️) on the left of each grey code block. This ensures all features execute properly." ] }, { "cell_type": "markdown", "metadata": { "id": "xjFxpeyRvw1V" }, "source": [ "**Explaining the code**" ] }, { "cell_type": "markdown", "metadata": { "id": "J_fcIUuknt4k" }, "source": [ "**Method Note**\n", "\n", "The MLD estimation algorithm used here follows **Courtois et al. 2017**, who proposed a simplified regression-based method inspired by **Holte & Talley 2009**.\n", "\n", "* Two linear regressions are fit: one in the **mixed layer** (≤100 m) and one in the **thermocline** (150–500 m).\n", "\n", "* The **intersection** of these regressions defines the MLD.\n", "\n", "* Compared to Holte & Talley’s original multi-criterion approach, this version is computationally lighter and well-suited to analyzing large ARGO datasets in regions with deep convection, such as the Southern Ocean." ] }, { "cell_type": "markdown", "metadata": { "id": "DSciOJn1wXLg" }, "source": [ "**1. Notebook Setup and ARGO Float Platform Data Source Definition**" ] }, { "cell_type": "markdown", "metadata": { "id": "fs2h5ZIJwYG5" }, "source": [ "This section imports all the necessary Python libraries for data handling, statistical analysis, mapping, and interactive widget creation. It also sets the URLs for accessing ARGO float platform information and associated time records from the OCEAN ICE ERDDAP server." ] }, { "cell_type": "markdown", "metadata": { "id": "96a35157" }, "source": [ "The following libraries are used in this notebook:\n", "\n", "* **Data Acquisition & Processing**: [pandas](https://pandas.pydata.org/docs/), [numpy](https://numpy.org/doc/), [datetime.datetime](https://docs.python.org/3/library/datetime.html#datetime.datetime), [os](https://docs.python.org/3/library/os.html)\n", "* **Visualization & Mapping**: [matplotlib.pyplot](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.html), [scipy.stats.linregress](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html), [folium](https://python-visualization.github.io/folium/), [folium.plugins.MarkerCluster](https://python-visualization.github.io/folium/plugins.html#folium.plugins.MarkerCluster)\n", "* **Interactive Data Exploration**: [ipywidgets](https://ipywidgets.readthedocs.io/en/latest/index.html)\n", "* **Output & Presentation**: [warnings](https://docs.python.org/3/library/warnings.html), [IPython.display](https://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "9TH4rTgNrmh3" }, "outputs": [], "source": [ "# @title\n", "import numpy as np\n", "from folium.plugins import MarkerCluster\n", "import folium\n", "import warnings\n", "import os\n", "import matplotlib.pyplot as plt\n", "from scipy.stats import linregress\n", "import pandas as pd\n", "from datetime import datetime\n", "from ipywidgets import (\n", " FloatSlider,\n", " Text,\n", " HBox,\n", " Layout,\n", " Output,\n", " VBox,\n", " HBox,\n", " HTML,\n", " Label,\n", " Dropdown,\n", " SelectionSlider,\n", " Button\n", ")\n", "from IPython.display import display, FileLink, HTML\n", "\n", "platform_url = 'https://er1.s4oceanice.eu/erddap/tabledap/ARGO_FLOATS_OCEANICE.csv?PLATFORMCODE'\n", "time_plat_url = 'https://er1.s4oceanice.eu/erddap/tabledap/ARGO_FLOATS_OCEANICE.csv?PLATFORMCODE%2Ctime&time%3E=2023-12-19T22%3A25%3A00Z&time%3C=2024-03-07T19%3A23%3A20Z'" ] }, { "cell_type": "markdown", "metadata": { "id": "YOiXx37-yMb6" }, "source": [ "**2. Interactive ARGO Float Profile Viewer and MLD Estimator**" ] }, { "cell_type": "markdown", "metadata": { "id": "Vs1g_tA3yNg7" }, "source": [ "This tool lets the user browse **temperature–depth** profiles by platform and date.\n", "\n", "* Data are retrieved from ERDDAP and pressure is converted to depth (1 dbar ≈ 1.0047 m).\n", "\n", "* MLD is then estimated following Courtois et al. (2017)\n", "\n", "* The resulting profile is plotted with regression lines for the mixed layer and thermocline, and a red horizontal line marking the estimated MLD." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 81, "referenced_widgets": [ "166b6728a71a40509e4fb551deae57f5", "c5339e1b01bd4f8ca0de25a40365079b", "46e9140a19fc49dabb424ef31a4eb5bf", "ccee0254fa7943d98fe6de5db310093b", "9de86c1a8e0c4d85bad1bdfd8ac657ac", "90e18a6ad99e4b519a1abbda1ff1ef16", "a05d1c7c3b03441a82673893e305a2f6", "eebc3570a05b44b3be5b5ffc77b542c4", "9df09df0470b4a0facd9512ad076282d", "df195cad0ef640beb4c1a7364f930f82", "7305128ac9694878998f40287b33f6d4", "403c64af2bea44eea56be4b29e9f9604", "6c0932de8edc404186847cd850ab9809", "d1e63588b6584df7aa49671bd6ed3fb8", "f88447dbe91645ac904cb798d1ba6559", "55f9bed6000a488ebc7bebe1c2024f13", "ab129b4e736c44239809c56d9c9f525d", "435aba90571e4104bedc378ca3afaf58", "376151c41dbd43eabbf6152d365bdb62", "83dca114fd304f86a4cb83b8d8d6a7de" ] }, "id": "Kzri2yqHtSR2", "outputId": "d2d6690e-f8ca-47f9-cfbb-3b8bb0ada271" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "166b6728a71a40509e4fb551deae57f5", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(HBox(children=(Label(value='Select a platform'), Dropdown(options=(np.int64(1902687), np.int64(…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# @title\n", "# Read the data from the platform URL, skipping the first row\n", "platforms_df = pd.read_csv(platform_url)\n", "\n", "# Get unique platform codes and sort them\n", "unique_platforms = sorted(platforms_df['PLATFORMCODE'].unique())\n", "\n", "# Create and display the platform dropdown\n", "platform_dropdown = Dropdown(\n", " options=unique_platforms,\n", " disabled=False,\n", ")\n", "\n", "# Read the data from the time_plat_url, skipping the first row\n", "time_df = pd.read_csv(time_plat_url, skiprows=[1])\n", "\n", "# Convert 'time' column to datetime objects\n", "time_df['time'] = pd.to_datetime(time_df['time'])\n", "\n", "# Create the date dropdown (options will be updated dynamically)\n", "date_dropdown = Dropdown(\n", " options=[datetime.now()], # Start with a placeholder option\n", " disabled=False,\n", ")\n", "\n", "# Output widget to display the date dropdown and plot\n", "date_output_box = Output()\n", "\n", "# Output widget for the plot\n", "plot_output = Output()\n", "\n", "# Function to estimate MLD (moved from cell Obn6S-Tyo83p)\n", "def estimate_mld(depth, theta, ml_limit=100, tc_start=150, tc_end=500):\n", " # Ensure depth and theta are sorted by depth for correct slicing\n", " sorted_indices = np.argsort(depth)\n", " depth = depth[sorted_indices]\n", " theta = theta[sorted_indices]\n", "\n", " # Fitting nello strato misto\n", " ml_indices = depth <= ml_limit\n", " ml_depth = depth[ml_indices]\n", " ml_theta = theta[ml_indices]\n", " # Check if there's enough data points for linear regression\n", " if len(ml_depth) < 2:\n", " slope_ml, intercept_ml = np.nan, np.nan\n", " else:\n", " slope_ml, intercept_ml, *_ = linregress(ml_depth, ml_theta)\n", "\n", " # Fitting nella termoclina\n", " tc_indices = (depth >= tc_start) & (depth <= tc_end)\n", " tc_depth = depth[tc_indices]\n", " tc_theta = theta[tc_indices]\n", " # Check if there's enough data points for linear regression\n", " if len(tc_depth) < 2:\n", " slope_tc, intercept_tc = np.nan, np.nan\n", " else:\n", " slope_tc, intercept_tc, *_ = linregress(tc_depth, tc_theta)\n", "\n", " # Intersezione delle rette\n", " mld = np.nan # Initialize MLD as NaN\n", " if not np.isnan(slope_ml) and not np.isnan(slope_tc) and slope_ml != slope_tc:\n", " mld = (intercept_tc - intercept_ml) / (slope_ml - slope_tc)\n", " # Ensure MLD is within the range of the data used for fitting\n", " # Use min/max of the relevant data for robust range check\n", " valid_depths = np.concatenate([ml_depth, tc_depth])\n", " if len(valid_depths) > 0 and (mld < np.min(valid_depths) or mld > np.max(valid_depths)):\n", " mld = np.nan # Invalidate MLD if it's outside the fitting range\n", "\n", "\n", " return mld, (slope_ml, intercept_ml), (slope_tc, intercept_tc)\n", "\n", "\n", "# Function to update date dropdown options and plot based on selected platform\n", "def update_widgets_and_plot(*args):\n", " selected_platform = platform_dropdown.value\n", " if selected_platform is not None:\n", " # Filter time_df for the selected platform and get unique dates\n", " platform_dates_df = time_df[time_df['PLATFORMCODE'] == selected_platform]\n", " unique_times = sorted(platform_dates_df['time'].unique())\n", "\n", " # Update dropdown options\n", " with date_output_box:\n", " date_output_box.clear_output()\n", " if unique_times:\n", " date_dropdown.options = unique_times\n", " date_dropdown.value = unique_times[0] # Set default value if options are available\n", " display(HBox([Label('Select a date'), date_dropdown])) # Display the label and dropdown in an HBox\n", " else:\n", " date_dropdown.options = [datetime.now()] # Reset to placeholder if no dates\n", " date_dropdown.value = datetime.now() # Set default value to placeholder\n", " display(HBox([Label('Select a date'), date_dropdown])) # Display the label and dropdown in an HBox\n", "\n", " # Now, trigger plot update based on the new dropdown value\n", " update_plot()\n", "\n", "# Function to update the plot when the dropdown value changes\n", "def update_plot(*args):\n", " global api_df # Declare api_df as global\n", " selected_platform = platform_dropdown.value\n", " selected_time = date_dropdown.value\n", "\n", " if selected_platform is not None and selected_time is not None:\n", " # Format the selected time to the required URL format (YYYY-MM-DDTHH%3AMM%3ASSZ)\n", " formatted_time = selected_time.strftime('%Y-%m-%dT%H%%3A%M%%3A%SZ')\n", "\n", " # Construct the URL with selected values\n", " api_url = f'https://er1.s4oceanice.eu/erddap/tabledap/ARGO_FLOATS_OCEANICE.csv?time%2Clatitude%2Clongitude%2CPRESS%2CTEMP&PLATFORMCODE=%22{selected_platform}%22&time%3E={formatted_time}&time%3C={formatted_time}'\n", "\n", " try:\n", " # Read the data from the URL into a DataFrame\n", " api_df = pd.read_csv(api_url)\n", "\n", " # Convert 'PRESS' from decibars to depth in meters (approx. 1 dbar = 1.0047 m seawater)\n", " api_df = api_df.iloc[1:].copy() # Start from the second row and create a copy\n", " api_df['PRESS (decibar)'] = pd.to_numeric(api_df['PRESS'])\n", " api_df['DEPTH (m)'] = api_df['PRESS (decibar)'] * 1.0047\n", " api_df['TEMP (Degree_C)'] = pd.to_numeric(api_df['TEMP'])\n", "\n", " # Drop the original columns\n", " api_df = api_df.drop(columns=['PRESS', 'TEMP'])\n", "\n", " # Ensure data is numeric\n", " real_depth = api_df['DEPTH (m)'].values.astype(float)\n", " real_theta = api_df['TEMP (Degree_C)'].values.astype(float)\n", "\n", " # MLD calculation\n", " mld, (slope_ml, intercept_ml), (slope_tc, intercept_tc) = estimate_mld(real_depth, real_theta)\n", "\n", " # Calculate fitting lines for plotting\n", " theta_ml_fit = slope_ml * real_depth + intercept_ml\n", " theta_tc_fit = slope_tc * real_depth + intercept_tc\n", "\n", " # Plot rendering\n", " with plot_output:\n", " plot_output.clear_output(wait=True)\n", " plt.figure(figsize=(6, 10))\n", " plt.plot(real_theta, real_depth, label='Profile θ')\n", "\n", " # Plot fitting lines only if slopes and intercepts are not NaN\n", " if not np.isnan(slope_ml) and not np.isnan(intercept_ml):\n", " plt.plot(theta_ml_fit, real_depth, '--', label='Fitting ML')\n", "\n", " if not np.isnan(slope_tc) and not np.isnan(intercept_tc):\n", " plt.plot(theta_tc_fit, real_depth, '--', label='Fitting termocline')\n", "\n", " # Plot MLD line only if MLD is not NaN\n", " if not np.isnan(mld):\n", " plt.axhline(mld, color='red', linestyle='-', label=f'Estimated MLD ≈ {mld:.1f} m')\n", "\n", " plt.gca().invert_yaxis()\n", " plt.xlabel('Potential temperature (°C)')\n", " plt.ylabel('Depth (m)')\n", " plt.title(f'Estimation of MLD by platform {selected_platform} as at {selected_time.strftime(\"%Y-%m-%d %H:%M:%S\")}')\n", " plt.legend()\n", " plt.grid(True)\n", " plt.tight_layout()\n", " plt.show()\n", "\n", " except Exception as e:\n", " with plot_output:\n", " plot_output.clear_output(wait=True)\n", " print(f\"Error fetching data or generating plot: {e}\")\n", "\n", "# Observe changes in the platform dropdown and update the date dropdown and plot\n", "platform_dropdown.observe(update_widgets_and_plot, names='value')\n", "\n", "# Observe changes in the date dropdown and update the plot\n", "date_dropdown.observe(update_plot, names='value')\n", "\n", "# Display the dropdowns and the output widget boxes\n", "display(VBox([HBox([Label('Select a platform'), platform_dropdown]),\n", " date_output_box]))\n", "\n", "# Initial update of the widgets and plot\n", "update_widgets_and_plot()" ] }, { "cell_type": "markdown", "metadata": { "id": "ysaSETUK1Nof" }, "source": [ "**3. Batch MLD Computation and Monthly Aggregation**" ] }, { "cell_type": "markdown", "metadata": { "id": "ZnBVmZB91O-w" }, "source": [ "This section processes **all ARGO float profiles** from the selected date range:\n", "\n", "* Data are cleaned and converted (pressure → depth).\n", "\n", "* * The `estimate_mld` function computes the MLD for each profile.\n", "\n", "* Each result is paired with geographic coordinates and timestamps.\n", "\n", "* Monthly averages of MLD are calculated for each platform and location.\n", "\n", "* arker sizes for later maps are scaled according to MLD ranges." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": [ "be7974ccbabe4193883e2efb1c67f4f3", "acf53ff7db5c45458e53316c0152e554" ] }, "id": "tnqIcCqX5I6a", "outputId": "10ed8a14-41ca-4a07-a86c-37eccf0bafa6" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "be7974ccbabe4193883e2efb1c67f4f3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# @title\n", "display(plot_output)" ] }, { "cell_type": "markdown", "metadata": { "id": "NOruzBnY6cEP" }, "source": [ "**4. Display Retrieved Profile Data**" ] }, { "cell_type": "markdown", "metadata": { "id": "sYawW3ha6PW0" }, "source": [ "This section allows direct inspection of raw values, calculated depths, and converted temperatures before further analysis or visualization." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 423 }, "id": "eb094b3d", "outputId": "b71f7c66-bac0-485f-f76d-b2497bd0bd71" }, "outputs": [ { "data": { "application/vnd.google.colaboratory.intrinsic+json": { "repr_error": "0", "type": "dataframe", "variable_name": "api_df" }, "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
timelatitudelongitudePRESS (decibar)DEPTH (m)TEMP (Degree_C)
12024-01-12T00:33:00Z-74.85373-102.4279666666666614.114.166270.094
22024-01-12T00:33:00Z-74.85373-102.4279666666666623.924.012330.087
32024-01-12T00:33:00Z-74.85373-102.4279666666666634.034.159800.028
42024-01-12T00:33:00Z-74.85373-102.4279666666666644.144.30727-0.173
52024-01-12T00:33:00Z-74.85373-102.4279666666666654.654.85662-0.783
.....................
902024-01-12T00:33:00Z-74.85373-102.42796666666666904.3908.550211.133
912024-01-12T00:33:00Z-74.85373-102.42796666666666914.2918.496741.134
922024-01-12T00:33:00Z-74.85373-102.42796666666666924.2928.543741.134
932024-01-12T00:33:00Z-74.85373-102.42796666666666934.2938.590741.134
942024-01-12T00:33:00Z-74.85373-102.42796666666666941.7946.125991.135
\n", "

94 rows × 6 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", " \n", " \n", " \n", "
\n", "\n", "
\n", "
\n" ], "text/plain": [ " time latitude longitude PRESS (decibar) \\\n", "1 2024-01-12T00:33:00Z -74.85373 -102.42796666666666 14.1 \n", "2 2024-01-12T00:33:00Z -74.85373 -102.42796666666666 23.9 \n", "3 2024-01-12T00:33:00Z -74.85373 -102.42796666666666 34.0 \n", "4 2024-01-12T00:33:00Z -74.85373 -102.42796666666666 44.1 \n", "5 2024-01-12T00:33:00Z -74.85373 -102.42796666666666 54.6 \n", ".. ... ... ... ... \n", "90 2024-01-12T00:33:00Z -74.85373 -102.42796666666666 904.3 \n", "91 2024-01-12T00:33:00Z -74.85373 -102.42796666666666 914.2 \n", "92 2024-01-12T00:33:00Z -74.85373 -102.42796666666666 924.2 \n", "93 2024-01-12T00:33:00Z -74.85373 -102.42796666666666 934.2 \n", "94 2024-01-12T00:33:00Z -74.85373 -102.42796666666666 941.7 \n", "\n", " DEPTH (m) TEMP (Degree_C) \n", "1 14.16627 0.094 \n", "2 24.01233 0.087 \n", "3 34.15980 0.028 \n", "4 44.30727 -0.173 \n", "5 54.85662 -0.783 \n", ".. ... ... \n", "90 908.55021 1.133 \n", "91 918.49674 1.134 \n", "92 928.54374 1.134 \n", "93 938.59074 1.134 \n", "94 946.12599 1.135 \n", "\n", "[94 rows x 6 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# @title\n", "display(api_df)" ] }, { "cell_type": "markdown", "metadata": { "id": "BSHEvTAA7Ig7" }, "source": [ "**5. Computation of Monthly Mean MLD from ARGO Profiles**" ] }, { "cell_type": "markdown", "metadata": { "id": "92iRUY7A7KnG" }, "source": [ "This block Fetches a larger dataset (December 19, 2023 – March 7, 2024), cleans and structures it for **spatio-temporal analysis of MLD variability**. Prepares the results for comparison across platforms and regions." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "c9e798c0" }, "outputs": [], "source": [ "# @title\n", "warnings.filterwarnings(\"ignore\", message=\"Converting to PeriodArray/Index representation will drop timezone information.\")\n", "\n", "url = 'https://er1.s4oceanice.eu/erddap/tabledap/ARGO_FLOATS_OCEANICE.csv?PLATFORMCODE%2Ctime%2Clatitude%2Clongitude%2CPRESS%2CTEMP&time%3E=2023-12-19T22%3A25%3A00Z&time%3C=2024-03-07T19%3A23%3A20Z'\n", "all_data_df = pd.read_csv(url, skiprows=[1])\n", "\n", "# Convert 'time' to datetime objects\n", "all_data_df['time'] = pd.to_datetime(all_data_df['time'])\n", "\n", "# Add 'year_month' column\n", "all_data_df['year_month'] = all_data_df['time'].dt.to_period('M').astype(str)\n", "\n", "# Ensure data is numeric for MLD calculation\n", "all_data_df['PRESS'] = pd.to_numeric(all_data_df['PRESS'], errors='coerce')\n", "all_data_df['TEMP'] = pd.to_numeric(all_data_df['TEMP'], errors='coerce')\n", "all_data_df.dropna(subset=['PRESS', 'TEMP'], inplace=True)\n", "\n", "# Convert 'PRESS' to depth in meters (approx. 1 dbar = 1.0047 m seawater)\n", "all_data_df['DEPTH'] = all_data_df['PRESS'] * 1.0047\n", "\n", "# Calculate MLD for each unique profile (platform and time)\n", "unique_profiles = all_data_df[['PLATFORMCODE', 'time']].drop_duplicates()\n", "\n", "mld_data = []\n", "for index, row in unique_profiles.iterrows():\n", " platform_code = row['PLATFORMCODE']\n", " profile_time = row['time']\n", "\n", " # Filter data for the current profile\n", " profile_data = all_data_df[(all_data_df['PLATFORMCODE'] == platform_code) & (all_data_df['time'] == profile_time)].copy()\n", "\n", " # Sort profile data by depth\n", " profile_data_sorted = profile_data.sort_values(by='DEPTH').copy()\n", "\n", " real_depth = profile_data_sorted['DEPTH'].values\n", " real_theta = profile_data_sorted['TEMP'].values\n", "\n", " mld, _, _ = estimate_mld(real_depth, real_theta) # Use the existing estimate_mld function\n", "\n", " # Append MLD and location data if MLD is not NaN\n", " if not np.isnan(mld):\n", " mld_data.append({\n", " 'PLATFORMCODE': platform_code,\n", " 'time': profile_time,\n", " 'latitude': profile_data_sorted['latitude'].iloc[0],\n", " 'longitude': profile_data_sorted['longitude'].iloc[0],\n", " 'MLD': mld,\n", " 'year_month': profile_data_sorted['year_month'].iloc[0]\n", " })\n", "\n", "mld_df = pd.DataFrame(mld_data)\n", "\n", "# Calculate the monthly average MLD for each location, including PLATFORMCODE in the groupby\n", "mld_monthly_location = mld_df.groupby(['year_month', 'latitude', 'longitude', 'PLATFORMCODE']).agg({'MLD': 'mean'}).reset_index()\n", "\n", "# Calculate min and max MLD for scaling marker size\n", "min_mld = mld_monthly_location['MLD'].min()\n", "max_mld = mld_monthly_location['MLD'].max()\n", "\n", "# Scaling factor for marker radius (adjust as needed for better visualization)\n", "radius_scale = 20 / (max_mld - min_mld) if (max_mld - min_mld) > 0 else 1" ] }, { "cell_type": "markdown", "metadata": { "id": "SQAbxVGL7xV6" }, "source": [ "**6. Monthly MLD Map — Clustered ARGO Profiles (Folium)**" ] }, { "cell_type": "markdown", "metadata": { "id": "hzyn8I0g705S" }, "source": [ "Builds an **interactive map** of monthly MLD values:\n", "\n", "* Uses Folium with `MarkerCluster` to group profile locations by month.\n", "\n", "* Each marker popup shows the month, platform code, MLD and coordinates.\n", "\n", "* A layer control allows toggling months on/off.\n", "\n", "* The map is embedded in a compact format for easy navigation." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 361 }, "id": "0a3123c8", "outputId": "918e55ce-080e-4824-841a-430c827b1301" }, "outputs": [ { "data": { "text/html": [ "
Make this Notebook Trusted to load map: File -> Trust Notebook
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# @title\n", "\n", "m = folium.Map(location=[-50, -30], zoom_start=1) # Centered near Antarctica\n", "\n", "month_layers = {}\n", "for month in mld_monthly_location['year_month'].unique():\n", " # Create a MarkerCluster for each month\n", " month_layers[month] = MarkerCluster(name=month)\n", " month_layers[month].add_to(m)\n", "\n", "# Adding markers to clusters\n", "for index, row in mld_monthly_location.iterrows():\n", " month = row['year_month']\n", " latitude = row['latitude']\n", " longitude = row['longitude']\n", " mld = row['MLD']\n", " platform_code = row['PLATFORMCODE'] # Get the platform code\n", "\n", " # Scale the marker radius based on MLD (optional with MarkerCluster, but can be used in popup)\n", " scaled_radius = (mld - min_mld) * radius_scale + 5 # Add a base size\n", "\n", " # Create a marker and add it to the appropriate month's cluster\n", " folium.Marker(\n", " location=[latitude, longitude],\n", " popup=folium.Popup(f\"Month: {month}
Platform: {platform_code}
MLD: {mld:.2f} m
Latitude: {latitude:.4f}
Longitude: {longitude:.4f}\", max_width=300) # Added platform code, latitude, and longitude to popup\n", " ).add_to(month_layers[month])\n", "\n", "\n", "# Aggiunta del controllo dei layer\n", "folium.LayerControl().add_to(m)\n", "\n", "# Visualizzazione della mappa con dimensioni ridotte\n", "# Convert the Folium map to HTML and wrap it in a styled div\n", "map_html = m._repr_html_()\n", "styled_map = HTML(f'
{map_html}
')\n", "display(styled_map)" ] } ], "metadata": { "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "name": "python" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "166b6728a71a40509e4fb551deae57f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_c5339e1b01bd4f8ca0de25a40365079b", "IPY_MODEL_46e9140a19fc49dabb424ef31a4eb5bf" ], "layout": "IPY_MODEL_ccee0254fa7943d98fe6de5db310093b" } }, "376151c41dbd43eabbf6152d365bdb62": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "403c64af2bea44eea56be4b29e9f9604": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "435aba90571e4104bedc378ca3afaf58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "46e9140a19fc49dabb424ef31a4eb5bf": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_403c64af2bea44eea56be4b29e9f9604", "msg_id": "", "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6c0932de8edc404186847cd850ab9809", "version_major": 2, "version_minor": 0 }, "text/plain": "HBox(children=(Label(value='Select a date'), Dropdown(options=(Timestamp('2024-01-12 00:33:00+0000', tz='UTC')…" }, "metadata": {}, "output_type": "display_data" } ] } }, "55f9bed6000a488ebc7bebe1c2024f13": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6c0932de8edc404186847cd850ab9809": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_d1e63588b6584df7aa49671bd6ed3fb8", "IPY_MODEL_f88447dbe91645ac904cb798d1ba6559" ], "layout": "IPY_MODEL_55f9bed6000a488ebc7bebe1c2024f13" } }, "7305128ac9694878998f40287b33f6d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "83dca114fd304f86a4cb83b8d8d6a7de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "90e18a6ad99e4b519a1abbda1ff1ef16": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DropdownModel", "_options_labels": [ "1902687", "3902582", "4903780", "4903786", "5907087", "5907093", "6990621", "6990622" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "DropdownView", "description": "", "description_tooltip": null, "disabled": false, "index": 0, "layout": "IPY_MODEL_df195cad0ef640beb4c1a7364f930f82", "style": "IPY_MODEL_7305128ac9694878998f40287b33f6d4" } }, "9de86c1a8e0c4d85bad1bdfd8ac657ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "LabelModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "LabelModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "LabelView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_eebc3570a05b44b3be5b5ffc77b542c4", "placeholder": "​", "style": "IPY_MODEL_9df09df0470b4a0facd9512ad076282d", "value": "Select a platform" } }, "9df09df0470b4a0facd9512ad076282d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "a05d1c7c3b03441a82673893e305a2f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ab129b4e736c44239809c56d9c9f525d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "acf53ff7db5c45458e53316c0152e554": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "be7974ccbabe4193883e2efb1c67f4f3": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_acf53ff7db5c45458e53316c0152e554", "msg_id": "", "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAPdCAYAAAAko3S1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA4XFJREFUeJzs3Xd4FFXbx/HvZtM7CSn0EHpv0qWKFAEVGwKKIpZHwQaoD+orYENEAVFBH5Qi9oINUZoUKUpRFKVIDZ1QE9LLzvvHuitLEkhCktkkv8917ZXd2TMz9+7M7t4558w5FsMwDERERETENB5mByAiIiJS3ikhExERETGZEjIRERERkykhExERETGZEjIRERERkykhExERETGZEjIRERERkykhExERETGZEjIRERERkykhy0PXrl3p2rWr2WG4WLlyJRaLhZUrV5odykXNnz+f+vXr4+XlRWhoqNnhXLaYmBj69etndhhOd955JzExMUW+3Y0bN9KhQwcCAgKwWCxs2bKlyPchIiK5K3UJ2dy5c7FYLHnefv7553xva9u2bYwfP579+/cXX8CFMGPGDObOnWt2GIWyY8cO7rzzTmrVqsWsWbP43//+l2fZ8ePHY7FY8PDw4ODBgzmeT0xMxM/PD4vFwsiRI53L9+/fj8Vi4ZVXXrloLDExMc7zwsPDg9DQUJo0acK9997LL7/8UvgXWYq9+OKLfPXVVzmWZ2ZmcvPNN3P69GmmTp3K/PnzqVGjRskHWAAvvPAC1157LVFRUVgsFsaPH59n2Y8//piWLVvi6+tLREQEw4cP5+TJk7mWfffdd2nQoAG+vr7UqVOH119/PUeZBQsWMHDgQGJjY/H396devXqMHj2as2fP5rrNc+fO8fjjj1OzZk18fHyoUqUKN910EykpKS7lNm/eTL9+/YiOjiYwMJCmTZsyffp0srOznWUc/5jldXvhhRcu/ea5gZSUFMaPH5/vfzB37NjB448/TvPmzQkKCqJSpUr07duXTZs25Vr+8OHD3HLLLYSGhhIcHMx1113H3r17XcocPHiQCRMm0KZNGypUqEDFihXp2rUry5Ytu2Q899xzDxaLpcD/rOXn/Nq5cyePPvooHTp0wNfXF4vFUuDfqZkzZ3LzzTdTvXp1LBYLd955Z67lli9fzl133UXdunXx9/cnNjaWu+++m6NHj+Z7X/l5rx3y8/rz8uKLL9KuXTsiIiKc6z/yyCOcOHHCpdyRI0e47bbbqFevHkFBQYSGhtKmTRvmzZtHQWaLXLduHVdeeSX+/v5ER0fz0EMPkZSUlKNceno6TzzxBJUrV8bPz4+2bduydOnSfO/HyShl5syZYwDGs88+a8yfPz/H7cSJE/ne1meffWYAxooVK3I8l56ebqSnpxdh5PnXqFEjo0uXLjmWZ2dnG6mpqUZ2dnbJB5VPM2fONABj165dlyw7btw4AzB8fX2NSZMm5Xh+zpw5hq+vrwEYI0aMcC7ft2+fARiTJ0++6PZr1KhhNG/e3HluzJgxw3jwwQeN6OhoAzAeffTRfL2mGjVqGH379s1X2ZJwxx13GDVq1CjUugEBAcYdd9yRY/n27dsNwJg1a9blBVeCACM6Otro1auXARjjxo3LtdyMGTMMwLjqqquMN9980xg7dqzh7+9vNG3a1EhNTXUp+9ZbbxmAceONNxr/+9//jNtvv90AjJdeesmlXHh4uNGkSRPj//7v/4xZs2YZDz30kOHt7W3Ur1/fSElJcSl79uxZo1mzZkZ4eLgxduxY49133zVeeuklo2/fvsbp06ed5TZt2mR4e3sbjRo1MqZMmWK89dZbxnXXXWcAxkMPPeQsd+zYsVy/+3r27GkAxoYNGy7znS0ZJ06cuOhxu9Do0aON0NBQY/jw4cbbb79tvPzyy0atWrUMq9VqLF261KXsuXPnjDp16hiRkZHGpEmTjClTphjVqlUzqlatapw8edJZ7vXXXzf8/PyMQYMGGW+88YYxbdo0o2XLlgZgzJ49O89YNm7caHh6ehq+vr4F+m7I7/k1Z84cw8PDw2jcuLHRvHlzAzD27duX7/0Yhv17KywszOjdu7fh6emZ6+feMAyjVatWRs2aNY3HH3/cmDVrljF27FgjKCjIiIqKMo4ePXrJ/eT3vS7I68/LDTfcYNx3333G1KlTjXfeeccYPXq0ERwcbNSuXdtISkpylvv999+NLl26GE8++aTx1ltvGa+//rpx7bXXGoAxduzYfO3rt99+M3x9fY0WLVoYM2fONJ566inDx8fH6N27d46yt956q+Hp6WmMGTPGePvtt4327dsbnp6exk8//ZSvfTmU2oRs48aNl72tiyVkZsorISsNJkyYYAD5SowdCdkNN9xgNG/ePMfzV199tXHjjTdeVkKW25dlSkqKcf311xuAMWPGjEvGWR4SslWrVhmA8dlnn11ecOc5/wuyODh+oC72w56enm6EhoYanTt3Nmw2m3P5t99+awDG9OnTnctSUlKM8PDwHMd6yJAhRkBAgEvylNt3xrx583JNau+//34jNDTU2Lt370Vfzz333GN4e3sbp06dclneuXNnIzg4+KLrGoZh1K5d26hTp84ly7mLgiZkmzZtMs6dO+ey7OTJk0ZERITRsWNHl+WTJk3KkZxu377dsFqtLj/If/75Z47vqrS0NKN+/fpG1apVc43DZrMZ7du3N+66664CfTcU5Pw6deqUkZiYaBiGYUyePLlQCdn+/fud53xen3vDsH/2L/wn3/F98NRTT11yP/l9rwvy+gvi888/NwDjo48+umTZfv36GQEBAUZWVtYly/bp08eoVKmSkZCQ4Fw2a9YsAzAWL17sXPbLL7/k+D1KTU01atWqZbRv375Ar6VMJ2QfffSR0bJlSyMwMNAICgoyGjdubEybNs1lOxfeHF+0Xbp0cUmKVqxYYQDGJ598YowfP96oXLmyERgYaNx4443G2bNnjbS0NOPhhx82IiIijICAAOPOO+800tLSXOKZPXu20a1bNyMiIsLw9vY2GjRokCMhqFGjRo6YHHE4Yrjwx+DTTz81WrZsafj6+hrh4eHGkCFDjEOHDrmUueOOO4yAgADj0KFDxnXXXWcEBAQYFStWNEaPHp2vk9MwDOPNN980GjZsaHh7exuVKlUyHnjgAePMmTMXjf1iX7aOhMzxgdq+fbvzuaNHjxpWq9X44osvijwhMwz7f3VhYWFGlSpVXH6oL7adxYsXG82aNTN8fHyMBg0aGF988YWzzJ49ewzAmDJlSo71165dawDGhx9+mOc+HMf2448/NsaOHWtERUUZ/v7+Rv/+/Y0DBw64lM0tIZs8ebLRvn17IywszPD19TVatmyZI7nK7Xy/4447jDvuuCPPc84wDGP58uXGlVdeafj7+xshISHGtddea2zbts1l245j+ddffxmDBg0yQkNDnUm24/1bsWKF0apVK8PX19do3Lix8zz+4osvjMaNGxs+Pj5Gy5YtjV9//TXP9yk3F/th37x5swEYb775Zo7nAgMDjQ4dOjgff/fddwZgfPfddy7l1q1bZwDG/PnzLxpHYmKiARijRo1yLjtz5ozh6+trPP7444Zh2BPEC78XHAYOHGgEBwfn+HEcOHCgERUVddF9O34Uxo8ff9FyhmH/sR89erTRuHFjIyAgwAgKCjJ69+5tbNmyJUfZ6dOnGw0bNjT8/PyM0NBQo1WrVsYHH3xw0e2np6cb//d//2e0bNnSCA4ONvz9/Y0rr7zS+PHHH51lHJ/hgnxf5OWGG24wwsLCXJa1bt3aaN26dY6yPXv2NGrVqnXJbY4aNcoAnEnR+ebNm2cEBQUZR48eLVBCVtjzq7AJ2fkulpDlJSwszLjhhhsuWS6/73VBXn9ycrKxffv2fP1jv2nTJgMwZs6cecmyI0eONCwWi0stdm77SkhIMDw9PY3HHnvMZf309HQjMDDQGD58uHPZY489ZlitVpfEzTAM48UXXzSAHN/fF1Pq+pA5JCQkcPLkSZfbqVOnnM8vXbqUQYMGUaFCBSZNmsRLL71E165dWbt2LQCdO3fmoYceAuDJJ59k/vz5zJ8/nwYNGlx0vxMnTmTx4sX897//5a677mLBggX85z//4a677uLvv/9m/Pjx3HDDDcydO5dJkya5rDtz5kxq1KjBk08+yauvvkq1atV44IEHePPNN51lpk2bRtWqValfv74zpqeeeirPeObOncstt9yC1Wpl4sSJ3HPPPSxYsIArr7wyR3+W7OxsevXqRXh4OK+88gpdunTh1VdfvWg/L4fx48czYsQIKleuzKuvvsqNN97I22+/Tc+ePcnMzHTGPmDAAOdrnT9/PjfccMMlt925c2eqVq3Khx9+6Fz2ySefEBgYSN++fS+5fmEEBgYyYMAADh8+zLZt2y5ZfteuXQwcOJA+ffowceJEPD09ufnmm539BGJjY+nYsSMffPBBjnU/+OADgoKCuO666y65nxdeeIHvvvuOJ554goceeoilS5fSo0cPUlNTL7rea6+9RosWLXj22Wd58cUXnfF99913zjLz58/Hx8eHTp06Oc+t++67j/vuu48nn3wSgIceesjlnFu2bBm9evUiPj6e8ePHM2rUKNatW0fHjh1z7dNy8803k5KSwosvvsg999zjXL57924GDx5M//79mThxImfOnKF///588MEHPProo9x2221MmDCBPXv2cMstt2Cz2S75XuVHeno6AH5+fjme8/Pz47fffnPu67fffgPgiiuucCnXqlUrPDw8nM/n5dixYwBUrFjRuWzNmjWkpaVRu3ZtbrrpJvz9/fHz86Njx445Lpro2rUriYmJ3HfffWzfvp24uDjeeustFixYwNixYy+6b8d5N2TIkIuWA9i7dy9fffUV/fr1Y8qUKTz22GNs3bqVLl26cOTIEWe5WbNm8dBDD9GwYUOmTZvGhAkTaN68+SX7XyYmJvLOO+/QtWtXJk2axPjx4zlx4gS9evVyvuaIiAhmzpwJwIABA5znY36+Ly507Ngxl/fcZrPxxx9/5DiOAG3atGHPnj2cO3fuktv09/fH39/fZfm5c+d44oknePLJJ4mOji5QnJd7fpWkpKQkkpKSXN7X3BTkvS7I69+wYQMNGjTgjTfeyLFdwzA4efIkx44d46effuKhhx7CarXmehFeamoqJ0+eZP/+/cybN485c+bQvn17l++D3Pa1detWsrKycsTq7e1N8+bNXWL97bffqFu3LsHBwTleP1Cwi6Pynbq5ibxqtgDDx8fHWe7hhx82goODL1r7c7Emy7xqyBo3bmxkZGQ4lw8aNMiwWCxGnz59XNZv3759jlqMC/uWGIZh9OrVy4iNjXVZlleT5YU1ZBkZGUZkZKTRuHFjl74wCxcuNADjmWeecS5z1II8++yzLtts0aKF0apVqxz7Ol98fLzh7e1t9OzZ0+W/9zfeeCNHXwtHTUlBmixPnDhhjBkzxqhdu7bzudatWxvDhg0zDMMolhoywzCMqVOnGoDx9ddfX3I7gEuNWEJCglGpUiWjRYsWzmVvv/12jpq+jIwMo2LFipf879RxbKtUqeLyX/mnn35qAMZrr73mXJZbDdmF51ZGRobRuHFjo3v37i7L8/pP2bH/C2vVmjdvbkRGRro0o/3++++Gh4eHMXToUOcyx7EcNGhQjm073r9169Y5ly1evNgADD8/PyMuLs653PEeFqQbwcVqyE6cOGFYLBaX/2gNwzB27Njh/N5w9HMZMWKEYbVac91HRESEceutt140juHDhxtWq9X4+++/ncumTJliAEZ4eLjRpk0b44MPPjBmzJhhREVFGRUqVDCOHDniLJuVlWWMHDnS8PLycsZmtVov+Z9/VlaWERUVZbRp0+ai5RzS0tJy1MLt27fP8PHxcfl+uO6664xGjRrla5sXxnNh/9szZ84YUVFRxl133eVcVtAmy9ysXr3asFgsxv/93//l2O6F33WGYa/lB4wdO3bkuc1du3YZvr6+xu23357juTFjxhg1a9Z01nIWpIassOeXGTVkzz33nAEYy5cvv2i5grzXBXn9ju+j3M6No0ePuvzuV61a1fjkk09y3e7EiRNdyl511VU5aqxy25cjN1i9enWObd58881GdHS083GjRo1yfM8ahmH89ddfBmC89dZbucaWm1JbQ/bmm2+ydOlSl9v333/vfD40NJTk5OTCXelwEUOHDsXLy8v5uG3bthiGwV133eVSrm3bthw8eJCsrCznsvOzckcNX5cuXdi7dy8JCQkFjmXTpk3Ex8fzwAMP4Ovr61zet29f6tev71I74vCf//zH5XGnTp3yvBrGYdmyZWRkZPDII4/g4fHvKXPPPfcQHByc634KavDgwezevZuNGzc6/w4ePPiyt3sxgYGBAJf8bxmgcuXKzto/gODgYIYOHcpvv/3mrBm55ZZb8PX1daklW7x4MSdPnuS2227LV0xDhw4lKCjI+fimm26iUqVKLFq06KLrnX9unTlzhoSEBDp16sSvv/6ar/3m5ujRo2zZsoU777yTsLAw5/KmTZty9dVX5xrTheeXQ8OGDWnfvr3zcdu2bQHo3r071atXz7H8UudkflWsWJFbbrmFefPm8eqrr7J3715++uknBg4c6PwcO2ofU1NT8fb2znU7vr6+F62l/PDDD3n33XcZPXo0derUcS53XJFlsVhYvnw5gwcP5v777+err77izJkzLrXjVquVWrVq0atXL+bNm8cnn3xC//79efDBB3O9MtZh+fLlHD9+PF+1YwA+Pj7Oz3F2djanTp0iMDCQevXquZwvoaGhHDp0iI0bN+Zru+e/Dsf7aLPZOH36tLO24XLOxwvFx8czePBgatasyeOPP+5c7jhOPj4+OdZxfE/mdSxTUlK4+eab8fPz46WXXnJ57u+//+a1115j8uTJuW77Ui7n/CpJq1evZsKECdxyyy107979omUL8l4X5PV37doVwzByvXI6LCyMpUuX8u233/Lss89SsWLFXK98BBg0aBBLly7lww8/dP6eXPg+57avS72u87eRmppaqHMtN575Lulm2rRpk2s1qcMDDzzAp59+Sp8+fahSpQo9e/bklltuoXfv3pe13/N/PABCQkIAqFatWo7lNpuNhIQEwsPDAVi7di3jxo1j/fr1OS53T0hIcG4rv+Li4gCoV69ejufq16/PmjVrXJY5Lvk/X4UKFThz5kyh9uPt7U1sbKzz+cvRokUL6tevz4cffkhoaCjR0dGX/DK4XI4P8fkJUF5q166NxWJxWVa3bl3APgxHdHQ0oaGh9O/fnw8//JDnnnsOsDclValSJd+v5fwfc7D/kNeuXfuSl7wvXLiQ559/ni1btjib6RzrF9bFzq8GDRqwePFikpOTCQgIcC6vWbNmrtsqyOcGuOQ5WRBvv/02qampjBkzhjFjxgBw2223UatWLRYsWOBMzP38/MjIyMh1G2lpabk2ewL89NNPDB8+nF69euUYcsKxTv/+/Z37AWjXrh01a9Zk3bp1zmUvvfQSr732Grt27XKWveWWW+jWrRsjRoygX79+eHrm/Mr+4IMPsFqtDBw4MF/vh81m47XXXmPGjBns27fPZUgNx3cVwBNPPMGyZcto06YNtWvXpmfPngwePJiOHTtech+OBHjHjh3OLg2Q9/lRUMnJyfTr149z586xZs0al/fW8Z6f/zlwSEtLcylzvuzsbG699Va2bdvG999/T+XKlV2ef/jhh+nQoQM33njjRWM7ceKEy3saGBhIYGBgoc+vwuyrsHbs2MGAAQNo3Lgx77zzziXLF+S9LqrX7+3tTY8ePQDo168fV111FR07diQyMjLHECQ1atRwDt8zaNAg7r33Xnr06MHOnTsvur9Lva7z1/Xz8yvwuZaXUltDdimRkZFs2bKFb775hmuvvZYVK1bQp08f7rjjjsvartVqLdBy458xT/bs2cNVV13FyZMnmTJlCt999x1Lly7l0UcfBSiyPjMXk1eM7mLw4MF88sknfPjhhwwcONClNq44/Pnnn4A92SoqQ4cOZe/evaxbt45z587xzTffMGjQoGJ9LT/99BPXXnstvr6+zJgxg0WLFrF06VIGDx5coDF3ikJeXz6F/dwUhZCQEL7++mvi4uJYtWoV+/fvZ/78+Rw9epSIiAjn4MWVKlUiOzub+Ph4l/UzMjI4depUjh9ogN9//51rr72Wxo0b8/nnn+dImBzrREVF5Vg3MjLSJfGcMWMG3bt3z/GDeu2113LkyJFck/LU1FS+/PJLevTokes+cvPiiy8yatQoOnfuzPvvv8/ixYtZunQpjRo1cvkeatCgATt37uTjjz/myiuv5IsvvuDKK69k3LhxF93++++/7xyL8N133+WHH35g6dKldO/evUi+5zIyMrjhhhv4448/+Prrr2ncuLHL82FhYfj4+OQ6jpZjWW7H8p577mHhwoXMnTs3xz9QP/74Iz/88AMPP/ww+/fvd96ysrJITU1l//79JCYmAtC6dWsqVarkvDnGSyzM+XUpee2rMA4ePEjPnj0JCQlh0aJF+fpHtSDvdXG8foAOHTpQqVKlXPvvXuimm27i4MGDrF69+qLlKlWqBJDn6zo/1kqVKhX4XMtLqa0hyw9vb2/69+9P//79sdlsPPDAA7z99tv83//9X641HsXp22+/JT09nW+++caltmDFihU5yuY3Lkfmv3PnzhxfIDt37iyygT3P309sbKxzeUZGBvv27XP+t3K5Bg8ezDPPPMPRo0eZP39+kWwzL0lJSXz55ZdUq1btkhdygL1TumEYLsfm77//BnAZNb93795ERETwwQcf0LZtW1JSUrj99tvzHdeuXbtcHhuGwe7du2natGme63zxxRf4+vqyePFil6rzOXPm5ChbkHP+/ON+oR07dlCxYkWX2jF3V716dedn7+zZs2zevNmltqN58+aAvSvANddc41y+adMmbDab83mHPXv20Lt3byIjI1m0aFGuNROtWrUC7ANnXujIkSPUr1/f+fj48eMutR0Ojhqm87s/OHzzzTecO3cu382VAJ9//jndunXj3XffdVl+9uzZHJ24AwICGDhwIAMHDnQmQi+88AJjx4516SZx4fZjY2NZsGCBy/l2YSJXmO9fm83G0KFDWb58OZ9++ildunTJUcbDw4MmTZrkOmDsL7/8QmxsbI5k47HHHmPOnDlMmzaNQYMG5VjvwIEDALledHD48GFq1qzJ1KlTeeSRR/jggw9cmqkc35kFPb/yI699FdSpU6fo2bMn6enpLF++3JmQXEpB3uvieP0OaWlp+er243ivLlW2cePGeHp6smnTJm655Rbn8oyMDLZs2eKyrHnz5qxYsYLExESXjv2Oi18K8rrKbA3Z+Vdcgv3EcfyoOaoXHT8meY2uXZQcNQHn/+efkJCQ649mQEBAvmK64ooriIyM5K233nKpMv3+++/Zvn17kV2h2KNHD7y9vZk+fbpL/O+++y4JCQlFtp9atWoxbdo0Jk6c6LxCpTikpqZy++23c/r0aZ566ql8/TAcOXKEL7/80vk4MTGR9957j+bNm7tcbeXp6cmgQYP49NNPmTt3Lk2aNLloMnWh9957z6VP2+eff87Ro0fp06dPnutYrVYsFovLj/n+/ftz7XeU33ML7P/5NW/enHnz5rms8+eff7JkyRKXL9XSZuzYsWRlZTlrqMHeny0sLMx59Z/DzJkz8ff3dznPjx07Rs+ePfHw8GDx4sU5ugI41KtXj2bNmvH111+7zAywZMkSDh48yNVXX+1cVrduXZYuXery3ZWdnc2nn35KUFAQtWrVyrH9Dz/8EH9/f5f+jZditVpz1EB+9tlnOZLGC79Dvb29adiwIYZhuDRD5rZ9cP2u++WXX1i/fr1LOccVjAX5/n3wwQf55JNPmDFjxkWvyLzpppvYuHGjS6Kwc+dOfvzxR26++WaXspMnT+aVV17hySef5OGHH851e927d+fLL7/McYuIiOCKK67gyy+/pH///gB07NiRHj16OG+OJKkg51d+5bWvgkhOTuaaa67h8OHDLFq0KEe3iUvJ73tdkNefkpLCjh07XD4zycnJObr6gP0f0jNnzrh0Ybpw5H6Hd999F4vFQsuWLS+6r5CQEHr06MH777/v8n08f/58kpKSXF7XTTfdRHZ2tstoBenp6cyZM4e2bdvm6JZxMaW2huz7779nx44dOZZ36NDBOfXD6dOn6d69O1WrViUuLo7XX3+d5s2bO2tEmjdvjtVqZdKkSSQkJODj40P37t2JjIws8nh79uzprLG77777SEpKYtasWURGRuao7mzVqhUzZ87k+eefp3bt2kRGRubaB8nLy4tJkyYxbNgwunTpwqBBgzh+/DivvfYaMTExLj82lyMiIoKxY8cyYcIEevfuzbXXXsvOnTuZMWMGrVu3zneH9fzI6wsxN8uXL3e205/v+uuvdzZjHD58mPfffx+w14pt27aNzz77jGPHjjF69Gjuu+++fO2rbt26DB8+nI0bNxIVFcXs2bM5fvx4rgn10KFDmT59OitWrMgx9MmlhIWFceWVVzJs2DCOHz/OtGnTqF27tssQEhfq27cvU6ZMoXfv3gwePJj4+HjefPNNateuzR9//OFStlWrVixbtowpU6ZQuXJlatas6exIn5vJkyfTp08f2rdvz/Dhw0lNTeX1118nJCTkolMVlYT58+cTFxfn/JJevXo1zz//PAC33367s4bvpZde4s8//6Rt27Z4enry1VdfsWTJEp5//nlat27t3J6fnx/PPfccI0aM4Oabb6ZXr1789NNPvP/++7zwwgsuFzb07t2bvXv38vjjj7NmzRqX/ppRUVEuidbUqVO5+uqrufLKK7nvvvtISEhgypQp1K1bl/vvv99Z7r///S+33XYbbdu25d5778XPz4+PPvqIzZs38/zzz7tcTARw+vRpvv/+e2688cYC9Rvq168fzz77LMOGDaNDhw5s3bqVDz74IMePec+ePYmOjqZjx45ERUWxfft23njjDfr27XvR5qx+/fqxYMECBgwYQN++fdm3bx9vvfUWDRs2dOl87efnR8OGDfnkk0+oW7cuYWFhNG7cOEcTpMO0adOYMWMG7du3x9/f3/m5dhgwYIDzn+wHHniAWbNm0bdvX8aMGYOXlxdTpkwhKiqK0aNHO9f58ssvefzxx6lTpw4NGjTIsc2rr76aqKgol9rV8z3yyCNERUVx/fXX5/l+nP9683t+JSQkOKcUcgzV9MYbbxAaGkpoaKjLVHJ5+fbbb/n9998Bey3rH3/84fx8XHvttc5/FIcMGcKGDRu466672L59O9u3b3duIzAw8JKvLb/vdUFe/4YNG+jWrRvjxo1zfs/s2rWLHj16MHDgQOrXr4+HhwebNm3i/fffJyYmxuW344UXXmDt2rX07t2b6tWrc/r0ab744gs2btzIgw8+6NJNJbd9ObbRoUMHunTpwr333suhQ4d49dVX6dmzp0tf9LZt23LzzTczduxY4uPjqV27NvPmzWP//v05aqEvKd/XY7qJiw17ARhz5swxDMM+em/Pnj2NyMhIw9vb26hevbpx33335ZgKYtasWUZsbKxhtVpdLrfPa9iLC4cFyGug2tyGf/jmm2+Mpk2bGr6+vkZMTIwxadIkY/bs2TkuaT527JjRt29fIygoyGWQzrwGhv3kk0+MFi1aGD4+PkZYWNhFB4a9kCPO/HjjjTeM+vXrG15eXkZUVJRx//33uwwMm9frzkt+y5LHsBd53RwDDJ4/UK3FYjGCg4ONRo0aGffcc4/xyy+/5Os1O7bjGBi2adOmho+Pj1G/fv2LjmrfqFEjw8PDI8dxyIvj2H700UfG2LFjjcjISMPPz8/o27evy7AQhpH7sBfvvvuuUadOHWdsc+bMyfXY7tixw+jcubPh5+dn8M/AsOfvP7fXtGzZMqNjx46Gn5+fERwcbPTv3z/PgWFzO5Z5DQ1w4XE1jPwPaWIY9s9oXufA+Z+RhQsXGm3atDGCgoIMf39/o127dsann36a53b/97//GfXq1TO8vb2NWrVqGVOnTs0xePDFzr/chqxZunSp0a5dO8PX19cICwszbr/99lynpfnhhx+MLl26GBUrVjS8vb2NJk2a5HnZvGMamm+++eaS79X50tLSjNGjRxuVKlUy/Pz8jI4dOxrr16/P8Z339ttvG507dzbCw8MNHx8fo1atWsZjjz2WYwDMC9lsNuPFF180atSoYfj4+BgtWrQwFi5cmOt5u27dOqNVq1aGt7f3JYfAyG0A4/NvFw4LcfDgQeOmm24ygoODjcDAQKNfv345pnRznLf5OY9yU5hZPPJzfl3sOy6/s3Rc7P1y/E46XsPl7is/73VBXn9uQ1GcOHHCuPfee4369esbAQEBhre3t1GnTh3jkUceyfG9s2TJEqNfv35G5cqVDS8vLyMoKMjo2LGjMWfOnHzty+Gnn34yOnToYPj6+hoRERHGiBEjch0sODU11RgzZowRHR1t+Pj4GK1btzZ++OGHfL1357MYRgn3+hUpB1q0aEFYWBjLly/PV/mVK1fSrVs3PvvsM2666aZijk5ERNxNme1DJmKWTZs2sWXLFoYOHWp2KCIiUkqU2j5kIu7mzz//ZPPmzbz66qtUqlQp3+NCiYiIqIZMpIh8/vnnDBs2jMzMTD766KM8hwUQERG5kPqQiYiIiJhMNWQiIiIiJlMfMuyjPx85coSgoKASHb1fREREzGcYBufOnaNy5crFPm1fXpSQYR+FvSCj6YqIiEjZc/DgQapWrWrKvpWQgXPU6YMHD7rMRVVYmZmZLFmyhJ49e+YYXVtKlo6F+9CxcB86Fu5Dx8I9JCYmUq1atXxNql5clJDx7yS3wcHBRZaQ+fv7ExwcrA+YyXQs3IeOhfvQsXAfOhbuxcxuS+rULyIiImIyJWQiIiIiJlNCJiIiImIy9SHLJ5vNRkZGRr7KZmZm4unpSVpaGtnZ2cUcmVyMjoX7KI5j4eXlhdVqLZJtiYiYSQlZPmRkZLBv3z5sNlu+yhuGQXR0NAcPHtS4ZibTsXAfxXUsQkNDiY6O1vEVkVJNCdklGIbB0aNHsVqtVKtWLV8DxtlsNpKSkggMDDRtgDmx07FwH0V9LAzDICUlhfj4eAAqVap02dsUETGLErJLyMrKIiUlhcqVK+Pv75+vdRzNm76+vkoCTKZj4T6K41j4+fkBEB8fT2RkpJovRaTU0i/UJTj6unh7e5sciYjkxvGPUmZmpsmRiIgUnhKyfFL/FBH3pM+miJQFSshERERETKaETERERMRkSsikwMaPH09UVBQWi4WvvvqKO++8k+uvv975fNeuXXnkkUcuax/p6ek8+OCDVKhQgYoVK/L4449rHDERESmzdJVlGXXnnXcyb948wD54ZvXq1Rk6dChPPvkknp6FP+zbt29nwoQJfPnll7Rr144KFSrQrVs3DMMoqtABeOyxx1i+fDnLli0jLS2NQYMG4efnx4QJE4p0PyIiIu5ACVkZ1rt3b+bMmUN6ejqLFi1ixIgReHl5MXbs2BxlMzIy8nUl6Z49ewC47rrrnJ2pfXx8ijTuU6dO8dZbb/HNN9/QqlUrACZPnszdd9/N2LFj8fX1LdL9iYiImE1NlgVkGAYpGVmXvKVmZOerXEFuBa2F8vHxITo6mho1anD//ffTo0cPvvnmGwBnM+MLL7xA5cqVqVevHgBbt26le/fu+Pn5ER4ezr333ktSUhJgb6rs378/AB4eHs6E7MImywulp6czZswYqlSpQkBAAG3btmXlypV5ll+9ejUeHh5cddVVzmU9e/YkKSmJn3/+uUDvgYiISGmgGrICSs3MpuEzi03Z97Zne+HvXfhD5ufnx6lTp5yPly9fTnBwMEuXLgUgOTmZXr160b59ezZu3Eh8fDx33303I0eOZO7cuYwZM4aYmBiGDRvG0aNH873fkSNHsm3bNj7++GMqV67Ml19+Se/evdm6dSt16tTJUX7v3r3UqFEDLy8v57IKFSoQHh7O3r176dq1a6HfAxEREXekhKwcMAyD5cuXs3jxYh588EHn8oCAAN555x1nU+WsWbNIS0vjvffeIyAgAIA33niD/v37M2nSJKKioggNDQUgOjo6X/s+cOAAc+bM4cCBA1SuXBmAMWPG8MMPPzBnzhxefPHFHOukpKSwe/duAgMDcyxPSUkp8OsXERFxd0rICsjPy8q2Z3tdtIzNZuNc4jmCgoOKdLoeP6+CTQuzcOFCAgMDyczMxGazMXjwYMaPH+98vkmTJi79xrZv306zZs2cyRhAx44dsdls7Ny5k6ioqALHvHXrVrKzs6lbt67L8vT0dMLDw3Ndx9/fn9q1a/Pdd9+5LG/Xrl2+p68SEREpTZSQFZDFYrlks6HNZiPL24q/t6ep8yd269aNmTNn4u3tTeXKlXNcXXl+4lVckpKSsFqtbN68Occ8gxfWgDnExsZy7tw5ateu7Vxms9lISEggNja2WOMVERExgxKyMiwgIMAlqbmUBg0aMHfuXJKTk53J2tq1a/Hw8HB2+i+oFi1akJ2dTXx8PJ06dcrXOl26dOHkyZPs3r3bGf/KlSvx8/OjXbt2hYpDRETEnekqS3EaMmQIvr6+3HHHHfz555+sWLGCBx98kNtvv71QzZUAdevWZciQIQwdOpQFCxawb98+NmzYwMSJE3M0STqEhYXxwAMPMHToUH7//Xc2bdrEww8/zOjRozXkhYiIlElKyMTJ39+fxYsXc/r0aVq3bs1NN93EVVddxRtvvHFZ250zZw5Dhw5l9OjR1KtXj+uvv56NGzdSvXr1PNeZNGkSrVq1okuXLvTq1YtrrrmGp59++rLiEBERcVcWo6iHWDfJm2++yeTJkzl27BjNmjXj9ddfp02bNvlaNzExkZCQEBISEggODnZ5Li0tjX379lGzZs18187YbDYSExMJDg42tQ+Z6Fi4k+I6FoX5jJZ3mZmZLFq0iGuuucZleBkpeToW7uFieUBJKRO/UJ988gmjRo1i3Lhx/PrrrzRr1oxevXoRHx9vdmgiIiIil1QmErIpU6Zwzz33MGzYMBo2bMhbb72Fv78/s2fPNjs0ERERkUsq9VdZZmRksHnzZpf5GT08POjRowfr16/PdZ309HTS09OdjxMTEwF71XFmZqZL2czMTAzDwGazYbPZ8hWToxXYsZ6YR8fCfRTXsbDZbBiGQWZmZo6hVSR3ju+5C7/vpOTpWLgHd3j/S31CdvLkSbKzs3NcBRgVFcWOHTtyXWfixIlMmDAhx/IlS5bkGHjU09OT6OhokpKSyMjIKFBs586dK1B5KT46Fu6jqI9FRkYGqamprF69mqysrCLddlnnmDZNzKdjYS53mAWm1CdkhTF27FhGjRrlfJyYmEi1atXo2bNnrp36Dx48SGBgYL47DBuGwblz5wgKCnJOwC3m0LFwH8V1LNLS0vDz86Nz587q1J9PmZmZLF26lKuvvlodyU2mY+EeHC1lZir1CVnFihWxWq0cP37cZfnx48fznG/Rx8cHHx+fHMu9vLxyfCCys7OxWCx4eHjk+8owR3OMYz0xj46F+yiuY+Hh4YHFYsn18ysXp/fMfehYmMsd3vtS/wvl7e1Nq1atWL58uXOZzWZj+fLltG/f3sTIRERERPKn1NeQAYwaNYo77riDK664gjZt2jBt2jSSk5MZNmyY2aGJiIiIXFKZSMgGDhzIiRMneOaZZzh27BjNmzfnhx9+KPR0PyIiIiIlqdQ3WTqMHDmSuLg40tPT+eWXX2jbtq3ZIbmtrl278sgjjxRq3ZiYGKZNm1ak8YiIiJR3ZSYhE1d33nknFoslx2337t0sWLCA5557zlk2tyRr7ty5hIaG5tjuxo0buffee4s5entMFouFjz/+OMdzjRo1wmKxMHfuXJfyShRFRKS0UkJWhvXu3ZujR4+63GrWrElYWBhBQUGF2mZERESOsdqKS7Vq1ZgzZ47Lsp9//pljx44REBBQIjGIiIiUBCVkhZWRnPctKy3/ZTNT81e2EHx8fIiOjna5Wa1WlybLrl27EhcXx6OPPuqsRVu5ciXDhg0jISHBuWz8+PFAzpooi8XCO++8w4ABA/D396dOnTp88803LnF888031KlTB19fX7p168a8efOwWCycPXv2ovEPGTKEVatWcfDgQeey2bNnM2TIEDw9y0T3RxEREaCMdOo3xYuV83zKUvtq6PfOvwsm14bMPEYBrnElDPvu38fTmkDKqZzlxicUMtCLW7BgAc2aNePee+/lnnvuASAsLIxp06bxzDPPsHPnTgACAwPz3MaECRN4+eWXmTx5Mq+//jpDhgwhLi6OsLAw9u3bx0033cTDDz/M3XffzW+//caYMWPyFVtUVBS9evVi3rx5PP3006SkpPDJJ5+watUq3nvvvct/8SIiIm5CNWRl2MKFCwkMDHTebr755hxlwsLCsFqtBAUFOWvRvL29CQkJwWKxOJddLCG78847GTRoELVr1+bFF18kKSmJDRs2APD2229Tr149Jk+eTL169bj11lu588478/0a7rrrLubOnYthGHz++efUqlWL5s2bF/StEBFxWylZ8ORXf/H0V1vBMOw3KXdUQ1ZYTx7J8ykDC6ScN+/lY7vz3o7lgpz4ka2XGdi/unXrxsyZM52Pi6vfVdOmTV32ERwcTHx8PAA7d+6kdevWLuXbtGmT72337duX++67j9WrVzN79mzuuuuuoglaRNze+9veZ/vp7YxoPoLKgXm3SpR2Gdnw2a+H8bZ68HzzBFg2Abo+AbV7mB2alCAlZIXlfZHkxmYDzkvILla2INstoICAAGrXrl1k28vLhVNOWCwW5zQ5l8vT05Pbb7+dcePG8csvv/Dll18WyXZFxP19s+cbtp/eTo/qPcp0Qpb9T4WY1cMCqyfDoQ2wY5ESsnJGTZaCt7c32dnZl1xWGPXq1WPTpk0uyzZu3Figbdx1112sWrWK6667jgoVKlx2TCJSOsSExACwN2GvuYEUM9s/CVlLj12wdyV4eELHh02NSUqeasiEmJgYVq9eza233oqPjw8VK1YkJiaGpKQkli9fTrNmzfD39y/UcBf33XcfU6ZM4YknnmD48OFs2bLFOX6YxWLJ1zYaNGjAyZMnL7n/w4cPs2XLFpdl1apVw2q1FjhuETFfbEgsUPYTMkcN2b2Wf1oAmt4KFWqYF5CYQjVkwrPPPsv+/fupVasWERERAHTo0IH//Oc/DBw4kIiICF5++eVCbbtmzZp8/vnnLFiwgKZNmzJz5kyeeuopwD4sR36Fh4fj5+d30TKvvPIKLVq0cLl99913F11HRNyXIyHbl7DP5EiKl82ARpb9dGGzvV/xlY+aHZKYQDVkZdT5o9hfaOXKlS6P27Vrx++//56j3MyZM10uCgDYv3+/y2Mjl6uBLhxf7Nprr+Xaa691Pn7hhReoWrUqvr6+ecZ44X4utY+8yttsNhITEy+6LRFxT+fXkBmGke9a9dLGBjzg+ZX9QaMboGLx9/0V96OETIrdjBkzaN26NeHh4axdu5bJkyczcuRIs8MSETdXI7gGVouV5Mxk4lPiiQqIMjukYhGcfoQ+Hv/0re002txgxDRKyKTY7dq1i+eff57Tp09TvXp1Ro8ezdixY80OS0TcnJfVi2pB1YhLjONQ0qEym5Cd9ozmocyRdAw4yKCohmaHIyZRQibFburUqUydOtXsMESkFHr76rcJ8w3D1zPvLg6lXTYeLLS1Z5tvDwaZHYyYRgmZiIi4rbI8/hgAho2ULHvfuABv/SSXZ7rKUkRExAwJh/B8sxWNT3+PBRvVwwo+tJCUHUrIRETEbZ1KPcW4deMYubwMXgi0djqWhIPUTf0NAw+qhl18aB8p21Q/KiIibsvX05cFuxYAkJCeQIhPiMkRFZGkePh1HgDve1wHQLUKqiErz1RDJiIibivAK4Aof/vVlWVqgNj1b0BWGrYqV/BjRmMANVmWc0rIRETErZW5KZRSTsPGdwHI7vgopzPsnfqrKSEr15SQlUNdu3blkUceKdS6MTExTJs2rUjjKasufK8sFgtfffWVafGIlFaxof8kZGfLSEL2y1uQkQTRTTgZ3YUMmwWLBaqEqg9ZeaaErIy68847sVgsOW67d+9mwYIFPPfcc86yuSVZc+fOJTQ0NMd2N27cyL333lvM0ZfN5OXo0aP06dPH7DBESp0yVUOWmWpPyAA6P8bBM2kARAf74u2pn+TyTJ36y7DevXszZ84cl2URERFYrdZCb9Mx+XhpkZmZaXYITtHR0WaHIFIq1QypCZSRhMzLD+74FrZ8CPX7c2DzQQCqVlDtWHmndLyQUjJT8rylZ6fnu2xaVlq+yhaGj48P0dHRLjer1erSZNm1a1fi4uJ49NFHnbVoK1euZNiwYSQkJDiXjR8/Hsi9Ge6dd95hwIAB+Pv7U6dOHb755huXOL755hvq1KmDr68v3bp1Y968eVgslhwThDvExMQAMGDAACwWi/MxwNdff03Lli3x9fUlNjaWCRMmkJWV5RLPzJkzufbaawkICODFF1/kpZdeomXLlsyePZvq1asTGBjIAw88QHZ2Ni+//DLR0dFERkbywgsvuMRx4MABrrvuOgIDAwkODuaWW27h+PHjLmW+/fZbWrduja+vLxUrVmTAgAF5Ho/za/3279+PxWJhwYIFdOvWDX9/f5o1a8b69etd1lmzZg2dOnXCz8+PatWq8dBDD5GcnJznPkTKIkcNmWEYZNrc55+sQqvUDPpMAg8PFm49BkCjSkEmByVmUw1ZIbX9sG2ez3Wq0okXr3jR+bjrp11JzUrNtewVUVcwp/e/tVi9v+jNmfQzOcptvWPrZUSbtwULFtCsWTPuvfde7rnnHgDCwsKYNm0azzzzDDt37gQgMDAwz21MmDCBl19+mcmTJ/P6668zZMgQ4uLiCAsLY9++fdx00008/PDD3H333fz222+MGTPmojFt3LiRyMhI5syZQ+/evZ01ej/99BNDhw5l+vTpdOrUiT179jibT8eNG+dcf/z48bz00ktMmzYNDw8P3nrrLfbs2cP333/PDz/8wJ49e7jpppvYu3cvdevWZdWqVaxbt4677rqLHj160LZtW2w2mzMZW7VqFVlZWYwYMYKBAweycuVKAL777jsGDBjAU089xXvvvUdGRgaLFi0q0Pv/1FNP8corr1CnTh2eeuopBg0axO7du/H09GTPnj307t2b559/ntmzZ3PixAlGjhzJyJEjc9R8ipRlYb5h/Dz4ZwK8AswO5fJkZYCnt/PhnhNJrPz7JBYMhrStZmJg4g6UkJVhCxcudEmk+vTpw2effeZSJiwsDKvVSlBQkEuTWkhICBaLJV/NbHfeeSeDBtlnYHvxxReZPn06GzZsoHfv3rz99tvUq1ePyZMnA1CvXj3+/PPPHLVR53M0i4aGhrrsf8KECfz3v//ljjvuACA2NpbnnnuOxx9/3CUhGzx4MMOGDQPAZrM5/86ePZugoCAaNmxIt27d2LlzJ4sWLcLDw4N69eoxadIkVqxYQdu2bVm+fDlbt25l3759VKtm/6J87733aNSoERs3bqR169a88MIL3HrrrUyYMMG572bNml3y/TrfmDFj6Nu3r/P1NWrUiN27d1O/fn0mTpzIkCFDnLWZderUYfr06XTp0oWZM2fi61t25/YTOZ/FYin9yVhmGrzZGmpdBT3Gg18os9fYh/FoVMEgJryUvz65bErICumXwb/k+ZwFC+nJ/zZbrrxlZZ5lPSyurcY/3PjDZcfm0K1bN2bOnOl8HBBQPB/4pk2buuwjODiY+Ph4AHbu3Enr1q1dyrdp06ZQ+/n9999Zu3atSzKXnZ1NWloaKSkp+PvbLxm/4oorcqwbExNDUNC/TQJRUVFYrVY8PDxcljni3r59O9WqVXMmYwANGzYkNDSU7du307p1a7Zs2eKsVSys89+7SpUqARAfH0/9+vX5/fff+eOPP/jggw+cZQzDwGazsW/fPho0aHBZ+xaRErTlfTh7AHYthT4vczo5gy9+PQRAt0o2k4MTd6CErJD8vfIeL8Zms5FOer7KFmS7BRUQEEDt2rWLbHt58fLycnlssVicNVNFKSkpiQkTJnDDDTfkeO782qLcEs/cYrzcuP38Lr8T7vkxWCz2sYgcMSQlJXHffffx0EMP5VivevXql71vkdLk56M/M+uPWcQEx/B/7f/P7HAKJjsT1kyz3+/4MHh68+HqXaRl2mhUOYhawTm7qUj5o4RM8Pb2Jjs7+5LLCqNevXo5+lVt3Ljxkut5eXnl2H/Lli3ZuXNniSSZDRo04ODBgxw8eNBZS7Zt2zbOnj1Lw4YNAXvt1vLly53No0WtZcuWbNu2rURer4i7y8jOYMOxDZxOO212KAX3xyeQcBACIqHl7aRnZTNvfRwAw9rXwHJECZnoKkvB3py3evVqDh8+zMmTJ53LkpKSWL58OSdPniQlpXBXet53333s2LGDJ554gr///ptPP/2UuXPnAv/WCOUV0/Llyzl27Bhnzti/rJ555hnee+89JkyYwF9//cX27dv5+OOPefrppwsV28X06NGDJk2aMGTIEH799Vc2bNjA0KFD6dKli7NJdNy4cXz00UeMGzeO7du3s3XrViZNmlRkMTzxxBOsW7eOkSNHsmXLFnbt2sXXX3/NyJFlcJJlkUtwXGkZlxhHli3rEqXdiC0bfnrVfr/Dg+Dlx8Lfj3LiXDpRwT70aazhcMROCZnw7LPPsn//fmrVquXsUN+hQwf+85//MHDgQCIiInj55ZcLte2aNWvy+eefs2DBApo2bcrMmTN56qmnAPuwHHl59dVXWbp0KdWqVaNFixYA9OrVi4ULF7JkyRJat25Nu3btmDp1KjVq1ChUbBdjsVj4+uuvqVChAp07d6ZHjx7ExsbyySefOMt07dqVzz77jG+++YbmzZvTvXt3NmzYUGQxNG3alFWrVvH333/TqVMnWrRowTPPPEPlypWLbB8ipUXlwMr4Wn3JtGVyOOmw2eHk319fwum94FcBrrgLwzB455/O/Hd0iNFgsOJkMQzDMDsIsyUmJhISEkJCQgLBwcEuz6WlpbFv3z5q1qyZ76vabDYbiYmJBAcHu3QaF7sXXniBt956i4MHDxb7vnQs3EdxHYvCfEbLu8zMTBYtWsQ111yToy+lO7v525vZcXoH07tNp1v1bmaHkz+zusPhzdDtaYzOY5i7bj8Tvt2Gn5eV9WO7E+BlKZXHoqy5WB5QUvQLJcVuxowZbNy4kb179zJ//nwmT57sHLpCRCS/SuWI/YM/hS5PkNpiOKM//Z0J324D4M6OMYT6e19iZSlP1Klfit2uXbt4/vnnOX36NNWrV2f06NGMHTvW7LBEpJQplXNaBlRkb+OHuP/dX9l5/BxWDwuP9arHfZ1jzY5M3IwSMil2U6dOZerUqWaHISKlXK3QWoT7huPnWQrmfUw/Bz5B/PDnUcZ89gdJ6VlUDPThjcEtaBcbbnZ04oaUkImISKnQo3oPrq5xtdlhXJphYJt/AwcTMpl8cjBJRhXaxITxxuAWRAarn6PkTgmZiIiUChcbKsednNn2IxUObSDa8OKc4c+9nWN5rFc9vKzqti15U0ImIiKljmEYbpmg/bz3FJbPx9EW+JJuPHtbD3prrDHJB6XrIiJSaszcMpOen/fkox0fmR2KC8MweGvVHl55dz5tja1kYaXjHc8rGZN8Uw2ZiIiUGunZ6RxNPupWV1ompGYy5rPfWbrtOO96fWVf2OxWqsXWMzUuKV2UkImISKkRG+peQ1/EnUpm6OwNxJ1KoZk1jqusv2FYPPDsPNrs0KSUUZOl5NvcuXMJDQ01O4wCmTt3brFMrSQi5nCORXbW/IQsK9vGQx9vIe5UClUr+DG7qX3QV0ujGyC8lsnRSWmjhKyMuvPOO7FYLDluvXv3ztf6MTExTJs2zWXZwIED+fvvv4shWlclnfg53puff/7ZZXl6ejrh4eFYLBZWrlzpUv6rr77KdVsrV650bs/Dw4OQkBBatGjB448/ztGjR4vxVdg99NBDtGrVCh8fH5o3b55rfNdddx2VKlUiICCA5s2b88EHH7iUWbBgAVdccQWhoaHOMvPnz7/ofo8ePcrgwYOpW7cuHh4ePPLII0X4qkT+5Rit/1TaKRLSE0yNZebKPfx+8CxBvp58el97wm+aBgPehi6PmxqXlE5KyMqw3r17c/ToUZfbRx8VviOsn58fkZGRRRih+6hWrRpz5sxxWfbll18SGBhYqO3t3LmTI0eOsHHjRp544gmWLVtG48aN2bp1a1GEe1F33XUXAwcOzPW5devW0bRpU7744gv++OMPhg0bxtChQ1m4cKGzTFhYGE899RTr1693lhk2bBiLFy/Oc5/p6elERETw9NNP06xZsyJ/TSIOAV4BRPlHAbAvYZ9pcfx5OIHXlu8C4LnrGlM51A+sntDsVohQ3zEpOCVkBWUYkJxszq2A88D7+PgQHR3tcqtQocI/L8Ng/PjxVK9eHR8fHypXrsxDDz0EQNeuXYmLi+PRRx911vZAzpqr8ePH07x5c2bPnk316tUJDAzkgQceIDs7m5dffpno6GgiIyN54YUXXOKaMmUKTZo0ISAggGrVqvHAAw+QlJQE2Gtwhg0bRkJCgnPf48ePB+w/+mPGjKFKlSoEBATQtm1bl5orR4zVq1fH39+fAQMGcPr06Xy9V3fccQcff/wxqampzmWzZ88u9JybkZGRREdHU7duXW699VbWrl1LREQE999/f6G252Bc4hyYPn06I0aMIDY292lZnnzySZ577jk6dOhArVq1ePjhh+nduzcLFixwlunatSsDBgygQYMGzjJNmzZlzZo1ee43JiaG1157jaFDhxISEpKv1+KoTVy8eDEtWrTAz8+P7t27Ex8fz/fff0+DBg0IDg5m8ODBpKSk5GubUj6YPYVSWmY2j36yhSybwTVNormunj9kZZgSi5QdSsgKKiUFAgMvevMIDia0alU8goMvWbZAtyL8Ufriiy+YOnUqb7/9Nrt27eKrr76iSZMmgL3JqmrVqjz77LPOmrW87Nmzh++//54ffviBjz76iHfffZe+ffty6NAhVq1axaRJk3j66af55ZdfnOt4eHgwffp0/vrrL+bNm8ePP/7I44/bq/g7dOjAtGnTCA4Odu57zJgxAIwcOZL169fz8ccf88cff3DzzTfTu3dvdu2y/5f6yy+/MHz4cEaOHMmWLVvo1q1bjmQwL61atSImJoYvvvgCgAMHDrB69Wpuv/32gr+5ufDz8+M///kPa9euJT4+Ps9yy5Yto0+fPtSoUYPOnTszffp04uLiSElJ4dNPP3W+F0UpISGBsLCwXJ8zDIPly5ezc+dOOnfuXOT7Bnti/8Ybb7Bu3ToOHjzILbfcwrRp0/jwww/57rvvWLJkCa+//nqx7FtKp6YRTWkR2YIArwBT9v/qkp3sik+iYqAPz1/fBMuyZ+D1lvB33rXIIpeiqyzLsIULF+ZocnvyySd58sknOXDgANHR0fTo0QMvLy+qV69OmzZtAHuTldVqJSgoiOjoi4+hY7PZmD17NkFBQTRs2JBu3bqxc+dOFi1ahIeHB/Xq1WPSpEmsWLGCtm3bArj0L4qJieH555/nP//5DzNmzMDb25uQkBAsFovLvg8cOMCcOXM4cOAAlStXBmDMmDH88MMPzJkzhxdffJHXXnuN3r17O5O7unXrsnbtWn744Yd8vV933XUXs2fP5rbbbmPu3Llcc801RERE5Gvd/Khfvz4A+/fvz7XpNz09nXvvvZf//ve/PP744/z+++98+OGHPPzwwwC0aNGCN954o8jiAfj000/ZuHEjb7/9tsvyhIQEqlSpQnp6OlarlRkzZnD11cUzZc3zzz9Px44dARg+fDhjx45lz549zlq+m266iRUrVvDEE08Uy/6l9BnZYqRp+/557yneWWNvKp10YxPCMo/Dlo/Algl+FUyLS0o/JWQF5e8P/zSv5cVms5GYmEhwcDAeHkVYCenvX6Di3bp1Y+bMmS7LHDUhN998M9OmTSM2NpbevXtzzTXX0L9/fzw9C3ZKxMTEEBQU5HwcFRWF1Wp1ed1RUVEutULLli1j4sSJ7Nixg8TERLKyskhLSyMlJQX/PF7j1q1byc7Opm7dui7LHR3vAbZv386AAQNcnm/fvn2+E7LbbruN//73v+zdu5e5c+cyffr0fK2XX47mxrxGF/fy8uK3337Dx8eH/fv307ZtWx555BHOnj0LQGhoKCdOnCiyeFasWMGwYcOYNWsWjRo1cnkuKCiILVu2kJSUxPLlyxk1ahSxsbF07dq1yPbv0LRpU+f9qKgo/P39XZpco6Ki2LBhQ5HvV6SgzqXZxxszDLi1dTWuahAFix6zJ2MxnaBaG7NDlFJMCVlBWSwQcIlqcpsNsrPt5YoyISuggIAAateunetz1apVY+fOnSxbtoylS5fywAMPMHnyZFatWoWXl1e+93FhWYvFkusym80G2GuH+vXrx/33388LL7xAWFgYa9asYfjw4WRkZOSZkCUlJWG1Wtm8eTNWq9XlucJ2vL9QeHg4/fr1Y/jw4aSlpdGnTx/OnTtXJNsGe8II9iQ2Nx4eHsyePZtx48Zx7tw5/Pz8uOmmmxgyZAjR0dG88sorHDhwgPfee++yY1m1ahX9+/dn6tSpDB06NNdYHOdO8+bN2b59OxMnTiyWhOz88+VS54/I+dKz0/G0eGL1sF66cBF4fuF2Dp1JpWoFP57u1xDOHYfN8+xPdn6sRGKQskt9yMoxPz8/+vfvz/Tp01m5ciXr1693XgXo7e1NdnZ2ke9z8+bN2Gw2Xn31Vdq1a0fdunU5cuSIS5nc9t2iRQuys7OJj4+ndu3aLjdH02aDBg1c+qoBOYayuJS77rqLlStXMnTo0ByJ3+VITU3lf//7H507d86zGTQtLY0vvviCr7/+mgMHDvDRRx9hs9m47bbb6NGjB3///TfPPPPMZceycuVK+vbty6RJk7j33nvztY7NZiM9Pf2y9y1SVAYtHESbD9qw6+yuEtnf8u3H+WTTQSwWePXmZgT6eML61yE7Haq2gZrF08dSyg/VkJVh6enpHDt2zGWZp6cnFStWZO7cuWRnZ9O2bVv8/f15//338fPzcw6iGhMTw+rVq7n11lvx8fGhYsWKRRJT7dq1yczM5PXXX6d///6sXbuWt956y6VMTEyMs6msWbNm+Pv7U7duXYYMGcLQoUN59dVXadGiBSdOnGD58uU0bdqUvn378tBDD9GxY0deeeUVrrvuOhYvXnzRoRpy07t3b06cOEFwcPBFy+3bt48tW7a4LKtTp47zfnx8PGlpaZw7d47Nmzfz8ssvc/LkSZerGS/k4+PDqlWrnIlgtWrVuO666woU/+7du0lKSuLYsWOkpqY6Y2zYsCHe3t6sWLGCfv368fDDD3PjjTc6zw9vb29nc/bEiRO54oorqFWrFunp6SxatIj58+e7NH+PHTuWw4cPu9TWOfaVlJTEiRMn2LJlC97e3jRs2LBAr0EkPzw9PLEZNvae3Uv9sPrFvr/Xf9wNwPCONWkbGw7Jp2DjbPuTncfYW09ELoMSsjLshx9+oFKlSi7L6tWrx44dOwgNDeWll15i1KhRZGdn06RJE7799ltnf6xnn32W++67z/mjfKnhFvKrWbNmTJkyhUmTJjF27Fg6d+7MxIkTXZrNOnTowH/+8x8GDhzIqVOnGDduHOPHj2fOnDk8//zzjB49msOHD1OxYkXatWtHv379AGjXrh2zZs1i3LhxPPPMM/To0YOnnnqK5557Lt/xWSyWfCWfo0aNyrHsp59+ct6vV68eFouFwMBAYmNj6dmzJ6NGjbroRRIWi+Wya+XuvvtuVq1a5XzcokULwJ5AxsTEMG/ePFJSUpg4cSITJ050luvSpYtzCJHk5GQeeOABDh06hJ+fH/Xr1+f99993Gdvs6NGjHDhwwGXfjn2BvSb0ww8/pEaNGuzfv/+yXpNIbmJDY9lyYgv7Eot/LLKElEz+OHQWgOGd7APTsvM7yEyG6KZQp2exxyBln8Uoql/aUiwxMZGQkBASEhJy1IykpaWxb98+atasia+vb762V2yd+qXAdCzcR3Edi8J8Rsu7zMxMFi1axDXXXFOgPqPuZN5f83hl0yv0rNGTV7u+Wqz7+n7rUe7/4FdqRQSwfHTXf8eEPLwZbFlQvV2ht10WjkVZcLE8oKSohkxEREodxxRKJTE47JrdJwHoVOef/p+O5smqVxT7vqX8UJWBiIiUOo7R+uMS48iyZRXrvhwJWcfaFSEj2X51pUgRU0ImIiKlTuXAyvhafcm0ZXI46XCx7efg6RTiTqVg9bDQLjYMNs2B15rCT1OKbZ9SPqnJMp/U1U7EPemzWT55WDy4usbV9jlvKb4rHB21Yy2qhRJkzYZ10yErDQKK5spzEQclZJfguOotIyMDPz8/k6MRkQs5Jh5Xh+jy58VOLxb7PtbsOq+58rf5kHQcgqtC01uLfd9SvighuwRPT0/8/f05ceIEXl5e+bo6zGazkZGRQVpamq7sM5mOhfso6mNhGAYpKSnEx8cTGhpapAP5igDYbAZr99gTss6xwfDNa/YnrnwEPL3NC0zKJCVkl2CxWKhUqRL79u0jLi4uX+sYhkFqaip+fn55zlsoJUPHwn0U17EIDQ296PhuUrZl2jKJT4mnSmCVIt/2/lPJnE3JxNfLg2Znl0DCQQiMgha3Ffm+RJSQ5YO3tzd16tQhIyMjX+UzMzNZvXo1nTt3VjOKyXQs3EdxHAsvLy/VjJVjcYlxXP/V9fh4+rB+0Poi/6dr/6lkAGLDfPFcO9W+sMOD4KXuK1L0lJDlk4eHR74HnbRarWRlZeHr66skwGQ6Fu5Dx0KKWqWAShgYJGcmE58ST1RAVJFuf99Je//ETkHH4Ohh8AuDVsOKdB8iDkrIRESkVPK2elM1qCpxiXHsTdhb5AnZ/pP2GjKPqi1g4B9wYgf4BBbpPkQc1MtZRERKreIcsd/RZFkzPACCoiG2a5HvQ8RBCZmIiJRajhH79yUU/STj+08m0cASR41w/yLftsiFlJCJiEip5UjIirqGLCPLRu3En/neZyzN1o38d0JxkWKihExEREotZ0J2tmgTsgOnkhlp/RIAn4jYfycUFykm6tQvIiKlVmxoLH1i+lAztCbZtmysHkUzDEri9h9p5bGLDLzw7vBgkWxT5GKUkImISKkV4BXAy11eLvLtVtn6JgCrA3vTI0gDD0vxU5OliIjI+Q5uIOrUL2QaVpaFDTI7GiknlJCJiEiplm3L5mDiwaLrR7b6FQC+yO5Eil/lotmmyCUoIRMRkVLti11fcM2X1/DKplcuf2OpZ+H4X9jwYGb2tXh76mdSSobONBERKdWKdHBYv1B46DcWNHqDOCMaHyVkUkJ0pomISKnmSMiOJB0hLSvt8jfo6c2eoFYA+Hhq8nopGUrIRESkVAv3DSfYOxgDg/2J+wu/obj1kJ0FQHqmDQAfL/1MSsnQmSYiIqWaxWK5/AFiT+2BudfAG1dAWiLpWdkAeFv1MyklQ2eaiIiUerGhlzmF0tppYNigYh3wDSYjy15Dpk79UlJ0pomISKl3WZOMnz0IWz6y3+/8GADZ/8xd6emhKZOkZGikfhERKfVaR7fmnib30DyyecFXXjcdbJlQszNUawP8O5e4h+awlBKihExEREq9huENaRjesOArnjsOm+fZ7/9TOwZg+ycjUz4mJUVNliIiUn6tfx2y06FqG4jp5FycbbMnZFY1WUoJUUImIiJlQnxKPOsOr+Ng4sH8rWAYcGKn/X7nx1yqw9RkKSVNCZmIiJQJr256lfuW3ceSuCX5W8FigSGfwd0/Qp2rXZ5yNFmqgkxKivqQiYhImVDoKZSqtsqxyJmQKSOTEqIaMhERKRMKNPTF/jWQfCrPp7Ptw5CpyVJKjBIyEREpE5yj9SfsxXB0AstNRjJ8cjtMawJHf8+1SLbNnpFZlZBJCVFCJiIiZUKN4BpYLVaSM5OJT4nPu+CmOZB6GoKiILJRrkXS/pnL0tdbk4tLyVBCJiIiZYKX1YtqQdWAi/Qjy0yzDwQLcOUosObelTrtn7ksfTV1kpQQnWkiIlJmXLJj/2/zIek4hFSDpgPz3I6jhsxPNWRSQnSVpYiIlBk3172Z7tW70yoq55WTZGXA2tfs9zs+DJ7eeW4nLfOfGjIvJWRSMpSQiYhImdGpaqe8n/zjE0g4CIFR0OL2i27HkZD5KSGTEqImSxERKR/OHQUPL+jwEHj5XrRoqrOGTD+TUjJUQyYiImXKxmMb2Xt2L31j+xLoHfjvE10eh+aDwa/CJbehJkspaUrIRESkTPnvT/8lPiWeemH1aB7Z3PXJkKqXXN8wjH+HvVBCJiVEdbEiIlKmnD9ALAAHN8DRP/K9fmJqlvN+gLfqLaRkKCETEZEyxZmQnd0LhgHfjYa3O8HvH+dr/V3x5wCoEuqnYS+kxCghExGRMsWlhmzXUjj2B3gFQJ2e+Vp/53F7QlY3KvASJUWKjhIyEREpU2JDz0vIVr9sX9j6LvAPy9f6fx/7JyGLDiqW+ERyo8ZxEREpUxyj9R9JOkLa4QP4Wn2g/YP5Xt9ZQxaphExKjmrIRESkTAn3DSfYOxgDg/1entDqDvtE4vlgGAY7/6khq6caMilBqiE7X3IyWIugA2dmJta0NPv2vLwuf3tSeDoW7kPHwn2U8WNhAZ6vdguhy5+nRpYBze62v9Z8OHkunbSz5/C3QO0AS77XK7QyfixKjeI+zvlgMQzDMDsIsyUmJhISEkICEGx2MCIiIlKiEoEQICEhgeBgczIBNVmKiIiImExNluc7cgSKIDPOzMxk8eLF9OrVCy9VQZtKx8J96Fi4j/JwLBLSE1h5cCWJ6Ync3ujiE4mf7/mFf/HBLwe5p3NNRl1dr/gC/Ed5OBalQmIiVK5saghKyM4XEGC/Xa7MTLJ9fe3b0gfMXDoW7kPHwn2U5WNx4m84/ifnql3B01sm4uXhxaAr7sbTI38/dycML1K9fQkODy2a34NLKcvHojTJzjY7AjVZiohIGbL6Zfh8GJXXvI6v1ZdMWyaHkw7ne/WzKZkABPspOZKSpYRMRETKhlN74M8vAPBoeRsxITHAP1Mo5dPZVHtCFqqETEqYEjIRESkb1kwBwwZ1ekGlZs4BYp2TjOdDoiMh8/culhBF8qKETERESr+zB/6dPLzzGOCCOS3zu5mUDABCVEMmJUwJmYiIlH5rXwNbFtTsAtXaAP8mZPsS9uVrEzabQYKzhkwJmZQsJWQiIlK6nTsGv8633+/8mHPx+TVk+RkDPSkjC9s/xVRDJiVNw16IiEjplnIaopuAhyfEXOlcXCO4Bu/0fMeZmF1Kwj9XWPp6eeDrVQTT6IkUgBIyEREp3aIawt3LIC0BLBbnYi+rF20rtc33ZhLT7AlZoI9qx6TkqclSRERKP4sF/EIvaxNpmfbBQf29VTsmJU8JmYiIlE6pZ2H1K/a/edh2ahvTNk/js78/u/TmMmyAEjIxhxIyEREpnTbOgh+fgw9uzrPIrjO7ePfPd/l+3/eX3FzqPzVk6j8mZlBCJiIipU96EqyfYb/f9r48izmvtMzHaP2OhMxPCZmYQAmZiIiUPpvnQOppCKsFjQbkWSw21J6QnUo7RUJ6wkU3mZbxT0KmJksxgRIyEREpXTJTYd3r9vudRoFH3glUgFcAUf5RwKUHiFUNmZhJCZmIiJQuv70PScchpBo0HXjJ4vmdQkl9yMRMSshERKT0yMqANdPs9698BKyXHjPM0Wx5qX5kqc4mS/00SsnTWSciIqVHRhLEdrHXjjW/LV+rOGrIDpw7cNFyjnHIfD1VQyYlTyP1i4hI6eEfBtfPsPcj8/LN1yq9YnpxZZUriQ6Ivmi5VA0MKyZSQiYiIqWPl1++i4b4hBDiE3LJcs4aMiVkYgI1WYqIiPuz2WDJ0xC/vdh2kZppH6lfTZZiBiVkIiLi/nZ8ax/qYnZvyEwr8Opf7vqS0StHs/bw2jzLpGocMjGREjIREXFvhgGrJ9vvt7k3333HzrflxBaWxC1hy4kteZZJz9I4ZGIeJWQiIuLedi2BY1vBKwDa3V+oTeRnCiVHDZnGIRMzKCETERH3dX7tWOvh9qssC6FmSE3g4oPD/jswrH4apeTprBMREfe1bzUc2gievtB+ZKE346ghi0uMI8uWlWsZTZ0kZlJCJiIi7stRO9ZyKARFFXozlQMr42v1JdOWyeGkw7mW8bbafxLTsmyF3o9IYSkhExER92SzQa3uEFQZOj58WZvysHgQExID5N2PLDrEfrHA8YSCX8UpcrmUkImIiHvy8IBOo+DRPyGk6mVvrmZITbw8vDiddjrX56OD7QnZUSVkYgKN1C8iIu7No2j6dD3d7mlevPJFPD1y/+lz1JAdS0wtkv2JFIRqyERExP0sfxa2L7RfZVlEgr2D80zGACqFqIZMzKMaMhERcS/Ht8FPrwIWGLkJKtYukd1Gh9jnxzymhExMoBoyERFxLz+9av/b8NoiTcYMw+CpNU9xy7e3EJ8Sn+N51ZCJmZSQiYiI+zi1B/5aYL/faUyRbtpisfDHiT/Yfno7e87uyfG8ow9ZQmomKRm5j1UmUlyUkImIiPtYMwUMG9TtDZWaFvnmHSP270vYl+O5IB9PAv6ZWFy1ZFLSlJCJiIh7OHsAfv/Yfr+Ia8ccnHNa5jKFksVioXKovR/ZkbO60lJKlhIyERFxD2tfA1sWxHaFaq2LZRexoXknZIASMjGNEjIREXEPta6CSs2g82PFtgtnDVkeo/VXqWBPyA6fUUImJUvDXoiIiHuofw3U61Osu3D0ITuVdoqE9ARCfEJcnq/yTw3ZIdWQSQlTQiYiIu7DYinWzQd4BVA5oDLeVm9OpZ3KMyFTDZmUNCVkIiJirrXTwciG1neDT1Cx727RDYuw5jEdk6PJ8kiCEjIpWUrIRETEPKlnYNXLkHEOwutAg37Fvsu8kjH4t4bs6Nk0sm0GVo/irbETcVCnfhERMc+GWfZkLLIh1LvG7GiIDPLB6mEhy2YQf05jkUnJUUImIiLmSD8HP8+w3+80GjxK5idpf8J+hnw3hFu+vSXHc1k2A89/asVSMrJLJB4RUJOliIiYZdNse5NlWC1oNKDEdhvkHcQfJ//AgoW0rDR8PX2dz63bc5L0LBuVQnyJrRhQYjGJqIZMRERKXmYqrHvDfr/TKLhIv66iFuYbRrB3MAYGcYlxLs8t+es4AFc3jMJSzFd8ipxPCZmIiJS8X+dDcjyEVIOmA0t01xaLJdcplGw2g2Xb4wF7QiZSkpSQiYhIyTIMqNkJGt9k7ztm9SrxEHKbQum3g2c5mZROkK8nbWuGl3hMUr6pD5mIiJQsiwUiG8BN75oWQm5TKC3ZdgyAbvUi8fZUfYWULJ1xIiJS7jimUDq/hmzptn/7j4mUNCVkIiJScrZ+Dl+NgFN7TA2jVmgtqgRWoUZwDQzDYHd8EntPJONltdC1XoSpsUn5pCZLEREpGTabfVT+kzshPNbef8wkVQKr8MONPzgfO2rH2teqSJBvyfdpE1ENmYiIlIzt39iTMd8QaH2P2dG4+PXAGQC61FXtmJhDCZmIiBQ/w4DVr9jvt/0P+AabG895MrMzOXAqBYDYCA0GK+ZQk6WIiBS/vxfD8a3gHWhPyNzAV7u/YsqmKXSq2okDpzsBUCPM3+SopLxSDZmIiBQvw4DVk+33Ww8H/zBz4/mHn6cfZ9LP8PfpPaRmZuNhgaoVlJCJOZSQiYhI8dq7Eg5vAk9faD/S7GicHGOR7U/cBxhUDvXT+GNiGjVZiohI8arUDLqOBVs2BEaaHY1TjeAaeFg8SMtOweKZSI3wimaHJOWYEjIRESle/mHQ9b9mR5GDt9WbakHViEuMw8M7nuphTcwOScox1c2KiEi55Rix38Mnnhrh6j8m5lFCJiIixePIb/BuT9i1zOxI8uToR+bhc0JXWIqplJCJiEjxWP0KHPwFtn5mdiR5alKxCT6Z9bGlR+LrbTU7HCnHTE3IJk6cSOvWrQkKCiIyMpLrr7+enTt3upRJS0tjxIgRhIeHExgYyI033sjx48ddyhw4cIC+ffvi7+9PZGQkjz32GFlZWSX5UkRE5HzH/4IdCwELdBpldjR56lGjB829niDzTAcOnU4xOxwpx0xNyFatWsWIESP4+eefWbp0KZmZmfTs2ZPk5GRnmUcffZRvv/2Wzz77jFWrVnHkyBFuuOEG5/PZ2dn07duXjIwM1q1bx7x585g7dy7PPPOMGS9JREQAfppi/9vwOoioZ24sl1D9n6bKA0rIxESmXmX5ww8/uDyeO3cukZGRbN68mc6dO5OQkMC7777Lhx9+SPfu3QGYM2cODRo04Oeff6Zdu3YsWbKEbdu2sWzZMqKiomjevDnPPfccTzzxBOPHj8fb2zvHftPT00lPT3c+TkxMBCAzM5PMzMzLfl2ObRTFtuTy6Fi4Dx0L91Hsx+LUbjz/WoAFyOzwCLj5Ma8S6gMeaew5earEz099LtyDO7z/bjXsRUJCAgBhYfZRnDdv3kxmZiY9evRwlqlfvz7Vq1dn/fr1tGvXjvXr19OkSROioqKcZXr16sX999/PX3/9RYsWLXLsZ+LEiUyYMCHH8iVLluDvX3SdOpcuXVpk25LLo2PhPnQs3EdxHYvmcbOoYdg4GtyCDZsPAAeKZT9FZcGZTwiqt5U/Tt3AokWnTYlBnwtzpaSYXzvqNgmZzWbjkUceoWPHjjRu3BiAY8eO4e3tTWhoqEvZqKgojh075ixzfjLmeN7xXG7Gjh3LqFH/9mlITEykWrVq9OzZk+Dgy5/wNjMzk6VLl3L11Vfj5eV12duTwtOxcB86Fu6jWI9FwkE8f18PQMQNL3FNlVZFu/1isPan3zhwcCtp1pP06dMHi8VSYvvW58I9OFrKzOQ2CdmIESP4888/WbNmTbHvy8fHBx8fnxzLvby8ivQDUdTbk8LTsXAfOhbuo1iORVgNGPA2HPgZz5h2RbvtYtI0uh7fH4Rsz+MkZhhUDMzZ1aW46XNhLnd4791i2IuRI0eycOFCVqxYQdWqVZ3Lo6OjycjI4OzZsy7ljx8/TnR0tLPMhVddOh47yoiISAnxsEKTm6DvK2ZHkm/1wmoD4OF9Qh37xTSmJmSGYTBy5Ei+/PJLfvzxR2rWrOnyfKtWrfDy8mL58uXOZTt37uTAgQO0b98egPbt27N161bi4+OdZZYuXUpwcDANGzYsmRciIiJgGGZHUCiO0fotXmfYe/KMydFIeWVqk+WIESP48MMP+frrrwkKCnL2+QoJCcHPz4+QkBCGDx/OqFGjCAsLIzg4mAcffJD27dvTrp29Krxnz540bNiQ22+/nZdffpljx47x9NNPM2LEiFybJUVEpBgkn7SPyt96OLS5D6xu0yPmksJ9w7Ea/mRbUjiachCINTskKYdMrSGbOXMmCQkJdO3alUqVKjlvn3zyibPM1KlT6devHzfeeCOdO3cmOjqaBQsWOJ+3Wq0sXLgQq9VK+/btue222xg6dCjPPvusGS9JRKR8Wv8mnN5jH5Xfo3SNeG+xWPAxKgFwJvOQydFIeWXqvzBGPqq3fX19efPNN3nzzTfzLFOjRg0WLVpUlKGJiEh+pZ6BDbPs9zs/BiV4lWJRCcxuwdmEikTUrWR2KFJOlZ46ZRERcU8bZkHGOYhsBHX7mB1NoQRn9CD92FlqBavvsZjDLa6yFBGRUir9HPw8w36/82jwKJ0/K1nZ9hYbL2vpjF9KP515IiJSeJtm25ssw2tDw+vNjqbQMrNtYMngaOpusm3ZZocj5ZASMhERKZysDFj3hv3+laNKXWf+86VnZxFY93km/nEfh5LUsV9KnhIyEREpHE9vuO1zaDUMmt5idjSXJTvbgi0jHIC9Z/eaHI2UR0rIRESk8Co1g/7TwGr+1DOXIzPbhi09EoC9CUrIpOQpIRMRkYLLzjQ7giIVHuiNLUMJmZhHCZmIiBRMdhbM7AgLH4WU02ZHUyTqRgU5a8j2JewzORopj5SQiYhIwfz5OZzcCdu+Ac+yMUVdvfMSsr0Je/M1cLlIUVJCJiIi+WezwU+v2u+3HwHeAebGU0TqRgdhywwHw0JyZjLxKfFmhyTljEbqFxGR/Nv+DZz8G3xDoPXdZkdTZOpFBYHhSebpLozp0RJvq7fZIUk5o4RMRETyxzBg9Sv2+23vB99gc+MpQpVCfAny9eRcfG+ujOxEhTL02qR0UJOliIjkz9+L4fhW8A6EtveZHU2Rslgs9loyYOexcyZHI+WREjIREcmf9f+Myt96OPiHmRtLMagbHQRk88uhv9h4bKPZ4Ug5o4RMRETy5+a50Gk0tB9pdiTFol5UEB6+R/j21GgeW/WY2eFIOaOETERE8iegIlz1DARGmh1JsagR7u8cHPZU2ikS0hNMjkjKEyVkIiJycRkpZkdQIqqE+oHNB7JCAA0QKyVLCZmIiFzcJ7fB3H5wfJvZkRSrSqF+AGSlRQCaQklKloa9EBGRvB3eDHuWg8UKXn5mR1OsAn08CfL1JCMjEtjN3rNKyKTkqIZMRETytvqfUfmb3gJhNc2NpQRUCfVzmUJJpKQoIRMRkdwd/wt2fgdY4MpRZkdTIiqF+GLLUJOllDw1WYqISO4cc1Y2vA4i6pobSwmpHOpH9q5KtAwaxB1XtDM7HClHlJCJiEhOJ3fBnwvs9zuPMTeWElQ51A9s/kRk96V79WZmhyPliJosRUQkp81zAQPq9oHoJmZHU2Kig30BOJaQZnIkUt6ohkxERHLqMR6iGkNkA7MjKVGnktMB8PVLYvmB5YT6hNIqqpXJUUl5oIRMRERysnpB80FmR1Hidh1PAsDw/41HVsyjZ42eSsikRKjJUkRE/pWWCFkZZkdhmr/j7QlZo4g6gK60lJKjhExERP61ciK83hJ2fGd2JCXOMAx2Hz8HQJsq9QGIS4wjy5ZlZlhSTighExERu+STsGkOJBwET1+zoylxRxLSSM7IxtPDQutqtfC1+pJpy+Rw0mGzQ5NyQAmZiIjYrX8TslKhckuo1d3saErcrn9qx2pWDMDH05OYkBgATaEkJUIJmYiIQOoZ2DDLfr/zGLBYzI3HBI4O/XWiAgGoGWyfKkr9yKQkKCETERH45X+QcQ4iG9nHHiuHdsXba8jqRAYBUDNUCZmUHA17ISJS3qWfg59n2O93Hg0e5fN/9b0nkgGoHWmvIbu6+tXUDK5Jg/DyNRabmEMJmYhIeff3Ykg7C+G1oeH1ZkdjmiybAYCvlxWA2hVqU7tCbTNDknJECZmISHnX5CYIrQGZyeBhNTsa03h72msGM7JsJkci5ZESMhERgWqtzY7AdD7/JGTpWdnOZZuObeKvU3/RsXJH1ZZJsVJCJiJSXmWlQ/oZCIw0OxK34JNLDdm8bfNYeXAlnm08lZBJsSqfPTdFRATL1k9gWhNYNdnsUNyCs8ky+9+ELDYkFoB9CftMiUnKDyVkIiLlkMXIxrruNchKA+8As8NxC97Wf5osM3MmZBr6QoqbEjIRkXKo6un1WM7GgX9FaHWn2eG4BR9P+wUNqiETMyghExEpb2zZ1Dn+rf1+h5Hg7W9uPG7C0WSZnvlvp/6aIfbBYU+mniQxI9GUuKR8UEImIlLOWHZ8S1D6UQzfULhiuNnhuA0vq6MPmeFcFugdSKS//aIHzWkpxUkJmYhIeWIYWNdOBcDW+h7wDTY5IPeRbbM3VXp6uM7jqWZLKQka9kJEpDyJ3w6ndpPl4YvR+l7K7zCwOTn6jjmaLh0ebvkwj/CIs/lSpDgoIRMRKU+iGpI1YjObF86mlV8Fs6NxK+lZuSdkjSs2NiMcKWfUZCkiUt4ERXM8pLnZUbidzH/6jjmGvxApSTrrRETKi/gdZkfg1jL+mTLpwhqybFs2H2z/gOd/fp60rDQzQpNyQAmZiEh5ELcOZrSFjwaBYVy6fDnkmDLpwhoyD4sHM7bM4JOdnxCXGGdGaFIOKCETESkPVr9i/xsYBRbLxcuWU3l16rdYLBqxX4qdEjIRkbLu8GbYsxwsVrjyEbOjcVsZeXTqB4gNVUImxUsJmYhIWbf6VfvfprdAhRhTQ3FnjpbcLFvOJl1nDZkGh5ViooRMRKQsO/Yn7PwOsECn0WZH49ZqRQQC8Pexczmec4xBphoyKS5KyEREyrKf/qkda3Q9VKxjaijurmFl+6wF247mnLPSUUMWlxhHli2rROOS8kEJmYhIWZWeBIc22e93GmNuLKVAI0dCdiRnQlY5sDK+Vl8ybZkcTTpa0qFJOaCR+kVEyirvAHhwM+xbDdEabf5S6lcKxmKBY4lpnEpKJzzQx/mch8WD9695n+iAaEJ8QkyMUsoq1ZCJiJRFjh7qnt5Qp4e5sZQSgT6exIQHALk3W9YLq6dkTIqNEjIRkbLo8K9gyzY7ilKnYSV7s+VfuTRbihQnJWQiImVN4hGY0xveaAXJp8yOplRpeJF+ZAfPHWTShkm8tOGlkg5LygElZCIiZc261yE7A4KrQEC42dGUKo6EbOvhBIwLpphKy0rj/e3v89Xur3I8J3K5lJCJiJQlSSdg0xz7fY07VmDNq4bibfVg38lkvv3D9WrKGsE1sFqsJGcmE58Sb1KEUlYpIRMRKUt+fhOyUqFKK6jV3exoSp0KAd480K0WAM9+u42E1Eznc95Wb6oGVQU0QKwUPSVkIiJlRcpp2DDLfr/zY5pEvJDu71qL2IoBnExKZ/LiHS7PacR+KS5KyEREyooN/4OMJIhqDHV7mx1NqeXjaeX5AfZx2z745QC/HTjjfM4xYv++hH2mxCZllxIyEZGy4ugf9r+dRqt27DJ1qFWRG1pWwTDgyS//JCvbBpw3ybhqyKSIKSETESkrBn0Idy2BhteZHUmZ8NQ1DQj192L70UTmrN0P/JuQnUrVcCJStJSQiYiUJdXbgofV7CjKhPBAH57s0wCAKUv/5tCZFOqH1WflLSv56rqvzA1OyhwlZCIipd3BDfYO/Robq8jdfEVV2sSEkZqZzfhv/sLTw5Nwv3AsahKWIqaETESkNMtKh0/vgKmN4dAms6MpcywWCy8MaIyX1cKy7fFs3H/m0iuJFIISMhGR0mzLh3DuCPgGQ6WmZkdTJtWJCqJTnQgAdscn8eOBHxmxfARz/pxjcmRSlighExEprbIzYc0U+/2OD4Onj7nxlGHhAd4AnEnJ4ETKCVYfWs2m46qRlKKjhExEpLTa+jmcPQD+FaHlHWZHU6ZVcCRkyRnEhv4z9MVZDX0hRUcJmYhIaWTLhp9etd/vMBK8/c2Np4yr4O+oIct0jtZ/OOkwaVlpZoYlZYgSMhGR0mjb13BqF/iGwhXDzY6mzKvg7wXYmyzDfcMJ9g7GwCAuMc7kyKSsUEImIlIandkPHl7Q7n57h34pVqH+//Yhs1gsGrFfipyn2QGIiEghdBoFTW8B70CzIykXws7rQwYQGxrLlhNblJBJkVFCJiJSWoVUNTuCcuPfJstMwD6Fkr+nP5nZmWaGJWWIEjIRkdLk6O9g8YDoJmZHUq44rrJMSM0kPSubwfUHM7ThUI3YL0VGfchEREqTH8bCW1fC5rlmR1KuhAd4E+JnryXbdTwJL6uXkjEpUkrIRERKi/1rIW4tWL2hTk+zoylXLBYLjavYL57483CCydFIWaSETESktPjpFfvfFrdBcGVzYymHGlcJAeDPI/aE7NVNr3LtV9ey+tBqM8OSMkIJmYhIaXBoM+z5ESxW6PiI2dGUS40r2xOyrYcTATiefJx9CfvYdWaXmWFJGaGETESkNHDUjjW7FSrUMDeWcspRQ7b9aCKZ2TZqhtpH7N+XsM/MsKSMUEImIuLujm2FnYsAC1w5yuxoyq0aYf4E+XiSkWVjz4kk5+CwSsikKCghExFxdwmHISASGt8AFWubHU255eFhoWFle8f+rYcSqBVSC7CP1m8YhpmhSRmghExExN3V6w2P/AG9J5kdSbnnaLb860giNYJrYLVYScpM4kTqCZMjk9JOCZmISGng5QeBEWZHUe45hr7YHHcGL6sX1YKqAZrTUi6fRuoXEXFXZ+LgyK/Q4FrwsJodjQBX1o7AwwJbDydw8HQKDcIa4OvpS7Yt2+zQpJRTQiYi4q7WTIXNc6DlULj2dbOjESAiyIf2tcJZu/sU3/5xhJe7vmx2SFJGqMlSRMQdJRyGLR/Y7zcbbG4s4qJfU/ugvAt/P2pyJFKWKCETEXFH616H7Ayo0RFqtDc7GjlP70bReHpY2HY0kT0nkgDUZCmXTQmZiIi7SYr/d/LwzmNMDUVyqhDgzZV1KgLw9ZYD3PjNjbT5oA0J6ZrjUgpPCZmIiLtZ/yZkpUKVVhDbzexoJBeOZstFW09wNv0sGbYMDRArl0UJmYiIO0k5DRvfsd/v/BhYLObGI7nq2SgKb6sHu+OTiPKrDmjEfrk8SshERNxJ8kmIqA9RTaBub7OjkTwE+3rRpZ59XLjMVPtfjUUml0PDXoiIuJOIunD3MntNmWrH3FqvRtEs3XacU2dCwUcJmVwe1ZCJiLgbiwUCws2OQi7B08OeMAdZqwCw96wSMik8JWQiIu4gI9k+EGzqWbMjkXw6nZwBQLRfDQAOJx0mPTvdzJCkFFNCJiLiDjbPg2XjYV5/MAyzo5F8cCRkUf7hNItoRo8aPUjKSDI5Kimt1IdMRMRsmWmwbrr9fuvh6jtWSpxOsSdkYYE+PNvjfZOjkdJONWQiImbb8gGcOwrBVaDZILOjkXw6808NWViAt8mRSFmghExExEzZmbB2mv1+x4fB08fUcCT/HE2WFfztCZlhGBqtXwpNCZmIiJm2fgZnD0BABLQcanY0UgBnUv6tIfv1+K+0+7AdwxYPMzkqKa2UkImImMWWDT+9ar/ffiR4+ZkbjxTI6eRMwF5DFukfSUpWCnEJcWTZskyOTEojJWQiImbJSIKqrcG/or0zv5QqPp72n9DTyRlUDqyMr9WXDFsGR5KOmByZlEZKyEREzOIbAgPegod/B58gs6ORAmpbMwyAn/eewsPiQUxIDKAR+6VwlJCJiJjNJ9DsCKQQ2tWyz6awfu8pAGqG1ASUkEnhKCETESlphgE/vgDxO8yORC5D+1h7Qvb7wbMkp2f9m5BpCiUpBCVkIiIlbc+PsPpleOcqSD9ndjRSSNXC/KlawY8sm8GmuDPEhsQCsC9hn8mRSWmkhExEpKStfsX+t+VQ9R0r5Ry1ZOv3nKJehXp0rdqVTlU7mRyVlEZKyEREStL+tXBgHVi9ocNDZkcjl6n9ef3IYkJieP2q1/lPs/+YHJWURkrIRERK0urJ9r8tbofgSubGIpet3T81ZH8eTuBcWqbJ0UhppoRMRKSkHNoEe1eAh6d9miQp9SqH+lEj3J9sm8Eve09jGAYnU09yPPm42aFJKaOETESkpDj6jjW9FSrUMDcWKTJd60YA8P4vccz4fQbdPu3GrK2zTI5KShslZCIiJcEwoFobCIiEKx81OxopQnddWROrh4WVO09gy7APFquxyKSglJCJiJQEiwU6jYJR26BibbOjkSJUIzyA65pXBmDtdiugscik4JSQiYiUJKuX2RFIMRjRrTYeFvh5pz0hO5V2ioT0BJOjktJECZmISHFbPRl2fAc2m9mRSDGpFRFIv6aVweaLNxUADRArBaOETESkOJ3eBysmwseD4fifZkcjxWhkd3tTdEqSfSgMJWRSEErIRESK09ppYGRDraugUlOzo5FiVDcqiGuaRGPLiATUsV8KRgmZiEhxSTgMv31gv9/5MXNjkRIxslsdspLqknH6Sqr7NTM7HClFlJCJiBSXddPBlgk1roQa7c2ORkpAw8rBdKvehfTj/di4PcLscKQUUUImIlIckuJh81z7/c6jTQ1FStbwK2sCsGx7PDabYXI0UlooIRMRKQ7r34CsNKhyBcR2MzsaKUFXxFQg0C+DBNvfrN9/wOxwpJRQQiYiUhyqt4fopva+YxaL2dFICfKyehAU8x7+MW/x+bYVZocjpYSn2QGIiJRJ9fpA3d5mRyEmqRkSy9aE3Ww5vtPsUKSUUA2ZiEhxsVhUO1ZOtalcH4BjKQc4l5ZpcjRSGighExEpShvfgTXTIP2c2ZGIiVpWrgeAxTue9XtOmRyNlAZKyEREikpGMqx4EZaNgx2LzI5GTBQbEguAh/dJVv193ORopDRQQiYiUlQ2z4OUU1AhBhrfaHY0YqLKgZXx8vDB4pHFyr3qRyaXpoRMRKQoZKbZB4IFuPJRsOqaqfLMw+JBTHAMAMdS4zh4OsXcgMTtKSETESkKWz6Ac0chuAo0G2R2NOIGhja6jaCkm7GlR7PvZLLZ4YibU0ImInK5sjPtHfkBOj4Mnj6mhiPu4fra11M/oA9GZhgHz6iGTC5OCZmIyOX641NIOAABEdByqNnRiBupVsEPgIOnU02ORNydOjmIiFyuKi3tnfgrtwAvP7OjETeRbcvGy/8QnsG/cuB0tNnhiJtTQiYicrkiG8BNs82OQtxMtpHNp0eewK+KjbizLcwOR9ycmixFRESKgbfVm2j/KgAcSt5vbjDi9pSQiYgU1s4f4OsRcGqP2ZGIm6oVah8gNsU4SlJ6lsnRiDtTQiYiUhiGAategt/et99EclE3rBYAHt7xGotMLkoJmYhIYexZDkd+A08/aD/C7GjETTmnUPKJ54ASMrkIJWQiIgVlGLBqsv3+FcMgoKK58Yjb+jchO8GBU0rIJG9KyERECipuLRz8Gaze0OEhs6MRN1YzpCYAHp7n2HUy3uRoxJ0pIRMRKajV/9SOtbgdgiuZG4u4tUDvQPpWHknKgWEcOq1O/ZI3JWQiIgVxaBPsXQkenvZpkkQu4aY6N5OdXI8DpzLMDkXcmAaGFREpiLBY6PJfSD8HFWqYHY2UAjXCAwA4cjaV9KxsfDytJkck7kgJmYhIQfiHQbexZkchpYiHZxIBYX+QnpXNwdNdqB0ZaHZI4obUZCkiUlCGYXYEUorsTdiLR9SH+EQsJe5UstnhiJtSQiYikh/xO2B2H9i1zOxIpJRxXGlp8TrD7hNnTI5G3JUSMhGR/FgzBQ6sg81zwGIxOxopRcJ9w/G2BGCxGPxxfLfZ4YibUkImInIpp/fC1s/s9zuNNjcWKXUsFguV/e0XgGw4tB1DTd6SCyVkIiKXsmYaGDao3QOqtDQ7GimFmkXXAyAh+zB/HUk0ORpxR0rIREQuJuEQbPnQfr/zY+bGIqVWnQr/TDLuE8+Sv46ZHI24IyVkIiIXs3Y62DIhphNUb2d2NFJKOadQ8j7Bkm3HTY5G3JESMhGRvCTFw6/z7Pc7jzE3FinVmkU046WOU8k4MpQdx85p+AvJQQmZiEhe/MPhujeh2WCo2cXsaKQUC/EJoW/tHrStVgeApaolkwsoIRMRyYuHFZrcBANmaqgLKRI9G0YDsOQvJWTiSgmZiEhuNDSBFLE/TvzBCetCrIHb2RR3mpNJ6WaHJG5ECZmIyIXSEmBGe1g/A7IzzY5Gyoi1R9Yyb8fbREb9jc2An3adMDskcSNKyERELrTxHTixHTbPBYvV7GikjIgNiQXAy8+eiO04ds7McMTNKCETETlfRjKsf9N+v/MY8NDXpBQNR0KWbBwBDHYfTzI3IHErnmYHICLiVjbPhZRTUKEmNLrB7GikDKkRXAMPiwcZthQsnuf4O97f7JDEjehfPxERh8w0+0CwAJ1GgVX/s0rR8bZ6Uy2oGgAe3vEcOpNKSkaWyVGJu1BCJiLisOV9SDoGwVWh6a1mRyNlkGPE/sCgUxgG7DuZYnJE4i6UkImIANiyYc1r9vsdHwZPb3PjkTLJ0Y8sJPgMALvj1Y9M7JSQiYiAfRDYge9B8yHQ8nazo5EyamC9gXx13Vd0rHAXALtPaAolsVMHCRERh8ot4PoZZkchZVjlwMoA1I/eDxxhd3wSDSqYGpK4CbepIXvppZewWCw88sgjzmVpaWmMGDGC8PBwAgMDufHGGzl+3HW6iQMHDtC3b1/8/f2JjIzkscceIytLnSRFpABs2WZHIOVMnchAAHZq6Av5h1skZBs3buTtt9+madOmLssfffRRvv32Wz777DNWrVrFkSNHuOGGfy9Dz87Opm/fvmRkZLBu3TrmzZvH3LlzeeaZZ0r6JYhIaWWzwazusPBRSD5pdjRSDnz292d8dXgKHj7HOHgmlRTVIQhukJAlJSUxZMgQZs2aRYUK/9bbJiQk8O677zJlyhS6d+9Oq1atmDNnDuvWrePnn38GYMmSJWzbto3333+f5s2b06dPH5577jnefPNNMjIyzHpJIlKa7FwER7fA1s/BQ704pPgt2b+E7/d/S8Vwe4vP4WRNXC9u0IdsxIgR9O3blx49evD88887l2/evJnMzEx69OjhXFa/fn2qV6/O+vXradeuHevXr6dJkyZERUU5y/Tq1Yv777+fv/76ixYtWuS6z/T0dNLT/53UNTExEYDMzEwyMy9/3jrHNopiW3J5dCzch1seC8PAuuplPIDsVsOxeQaAO8VXTNzyWJQjMUEx/Hz0ZyqEnCH+CBxM1rEwmzu8/6YmZB9//DG//vorGzduzPHcsWPH8Pb2JjQ01GV5VFQUx44dc5Y5PxlzPO94Li8TJ05kwoQJOZYvWbIEf/+iGzl56dKlRbYtuTw6Fu7DnY5FZOIftD/2O1ke3ixNrEXGokVmh1Si3OlYlCfJ6fYrK9Oy9gFdOZhk0bEwWUqK+ePBmZaQHTx4kIcffpilS5fi6+tbovseO3Yso0aNcj5OTEykWrVq9OzZk+Dg4MvefmZmJkuXLuXqq6/Gy8vrsrcnhadj4T7c7lgYBtb33gDA0no4PXqUn4Fg3e5YlDORxyP5dvm3WALsrTOHki06FiZztJSZybSEbPPmzcTHx9OyZUvnsuzsbFavXs0bb7zB4sWLycjI4OzZsy61ZMePHyc6OhqA6OhoNmzY4LJdx1WYjjK58fHxwcfHJ8dyLy+vIv1AFPX2pPB0LNyH2xyLfT/BoQ1g9cHa8WGs7hBTCXObY1HO1AmvA8Dp9GNgyeREmifpNgv+OhamcYfPgWmd+q+66iq2bt3Kli1bnLcrrriCIUOGOO97eXmxfPly5zo7d+7kwIEDtG/fHoD27duzdetW4uPjnWWWLl1KcHAwDRs2LPHXJCKlyLrX7X9b3g7BlcyNRcqVcN9wgr2DMTCIrJCIgYXtR8+ZHZaYzLQasqCgIBo3buyyLCAggPDwcOfy4cOHM2rUKMLCwggODubBBx+kffv2tGvXDoCePXvSsGFDbr/9dl5++WWOHTvG008/zYgRI3KtARMRcbruTfh5BlwxzOxIpJyxWCzEhsTy+4nfqRqZRvxp+OtoIh3qRJodmpjI9KssL2bq1Kl4eHhw4403kp6eTq9evZgx499RtK1WKwsXLuT++++nffv2BAQEcMcdd/Dss8+aGLWIlAqBEdBjnNlRSDk1uctkQnxCmLk8jl937GHbEfP7MIm53CohW7lypctjX19f3nzzTd58880816lRowaLytmVUSJyGTLTwKtkLyQSuVB0gL2fc/3oIAB2HNOI/eWd6QPDioiUqC/vhbn94NhWsyMRoX4l+xRKu08kkZltMzkaMZNb1ZCJiBSr+B2w7RvA0Kj8YqqUzBRe3vgy+xP242u9gbRsK3tOJFE/+vKHXpLSSTVkIlJ+rJkCGNCgP0Q2MDsaKcd8rD4s3LuQzfGbiQo6DcD2o+pHVp4pIROR8uH0Xtj6mf1+pzHmxiLlntXDSkxwDADBgfahm3Zo6ItyTQmZiJQPa6aCYYM6PaFyc7OjESE2JBYAHz97QrZNNWTlmhIyESn7zh6ELR/Z73d+zNxYRP5RM7QmADYve0KmwWHLNyVkIlL2bZ4LtkyI6QTV2pgdjQjwbw1ZiuUEFgucTErnxLl0k6MSs+gyIxEp+7r+F8JrQVgtsyMRcXIkZCdtJ6hawZeDp9PYHZ9ERJBmmimPVEMmImWf1QuaD4bqbc2ORMSpRnANrBYrPhYfqobZlx04nWxuUGIaJWQiUnZlJENWhtlRiOTK2+rN6ptX83jI49QKjwBg/6kUk6MSsyghE5Gya800eL3lP4PBirgfP08/AKqH+QNwQAlZuaU+ZCJSNqUlwC9vQ3oCYJgdjchFVQ+zJ2ZxarIst5SQiUjZtGGWPRmrWA/q9zc7GpFcbT25ldlJs4k6/CPQk7iTKRiGgcViMTs0KWFqshSRsicjGda/ab/feQx46KtO3JMFC3uz9vJ3wu9YLHAuPYszKZlmhyUm0LeUiJQ9m+ZA6mmoUBMa3WB2NCJ5igmJAeBU2imiQmwA7D+lZsvySAmZiJQtmWmwbrr9fqdRYFXPDHFfgV6BBFuCAYgMTwAgTglZuaSETETKll1LIOk4BFeFpreaHY3IJUVY7UNeVAg5C8CfhzWnZXmkfx1FpGxpeC0MXwqpZ8DT2+xoRC4pwiOCPezBP/AUUJNN+0+bHZKYQAmZiJQ9mq9SShFHDVmmxzEA/jySSEpGFv7e+okuT9RkKSJlgy0bkk6YHYVIgUV4RBDmG0ZEQCiVQnzJthlsOXjW7LCkhCkhE5Gy4a8vYVoTWPmS2ZGIFEhNz5osu2EZEztNpFWNCgBs2n/G5KikpCkhE5HSz2aD1a9AVip4WM2ORqRAzh8EtnWMfZbxTXFKyMobJWQiUvrt/A5ObAefYGh9j9nRiBRay+qhAPwad4Zsm6b8Kk+UkIlI6WYYsHqy/X6be8Ev1NRwRArjgx0f0PPznqw+8SGBPp4kpWex89g5s8OSEqSETERKt93L4Ojv4OUP7R4wOxqRQsk2sjmafJR9iXtp8U8t2eY4DX9RnighE5HSyzBg1cv2+1fcBQHh5sYjUkg1g2sCsDdhLw0q2Ufu338qxcyQpIQpIROR0uv0XnvtmNUHOjxodjQihVYzxJ6QxSXEERHkBcDxxDQzQ5ISplHnRKT0CouFR/6AgxsgKNrsaEQKrZJ/JXysPqRnp+Pla7/CMj4x3eSopCSphkxESifjnyvQgqLt0yWJlGJWDysxwTEAZFrsI/YfP6casvJECZmIlE6n9sB54zeJlHaxIbEAnMs+AtibLA1DQ1+UF0rIRKT0Ofo7vNEKPrjFPmWSSBnQqGIjmkU0o2pIRQDSMm0kpmWZHJWUlAL1Idu+fTsff/wxP/30E3FxcaSkpBAREUGLFi3o1asXN954Iz4+PsUVq4iI3epX7H99gzUyv5QZdzS6gzsa3QHAC35LSEjNJD4xjRA/L5Mjk5KQrxqyX3/9lR49etCiRQvWrFlD27ZteeSRR3juuee47bbbMAyDp556isqVKzNp0iTS09URUUSKSfx22P6N/X6n0ebGIlJMooLtlRvH1bG/3MhXDdmNN97IY489xueff05oaGie5davX89rr73Gq6++ypNPPllUMYqI/OunKfa/DfpDZANzYxEpBhnZGUQGe/L3cTimoS/KjXwlZH///TdeXpeuMm3fvj3t27cnMzPzsgMTEcnh1B7483P7/U5jzI1FpBjct/Q+fj76M839HgdCOZWkGrLyIl9NlvlJxi6nvIhIvqyZCoYN6vSEys3NjkakyHlbvbEZNvA6DsCp5AyTI5KSUqiBYTdu3MiKFSuIj4/HZrO5PDdlypQiCUxExEVWOuxbbb/f+TFzYxEpJrEhsaw8uJJ0j6NAPU4lKSErLwqckL344os8/fTT1KtXj6ioKCznjQNk0ZhAIlJcrN4wcqN9MvFqbcyORqRYOMYiS7bZxyI7lawmy/KiwAnZa6+9xuzZs7nzzjuLIRwRkVw4Bsf09IH6fc2NRaQYORKyU5mHADitJstyo8ADw3p4eNCxY8fiiEVEJHfH/tAAsFIuOCYZP5d5GjxS1WRZjhQ4IXv00Ud58803iyMWEZGckk/B7N7wxhVw7pjZ0YgUq0DvQCL9IwHw8IlXk2U5UuAmyzFjxtC3b19q1apFw4YNc1xRuWDBgiILTkSEn2dAZop9VP7AKLOjESl23at152zaOb7Y60Vapo2UjCz8vQt1DZ6UIgU+wg899BArVqygW7duhIeHqyO/iBSf1LOwYZb9fqcxmkxcyoWn2j2FYRh8s+wH0rFx4lw6NcKVkJV1BT7C8+bN44svvqBvX3WsFZFitnEWpCdARH2o38/saERKjMVioUqoH3tPJnP4TCo1wgPMDkmKWYH7kIWFhVGrVq3iiEVE5F/pSbB+hv1+pzHgUeCvK5FSK9OWSWRYEgAHTqeYHI2UhAJ/w40fP55x48aRkqITRESK0ea5kHoawmKh0QCzoxEpMWfTztLmgzb8ZX0SLJlKyMqJAjdZTp8+nT179hAVFUVMTEyOTv2//vprkQUnIuXYoY32v1eOAqv6z0j5EeITgr+nP4kZiXh4n1RCVk4U+Fvu+uuvL4YwREQucMs8iFsHVa4wOxKREmWxWIgNiWXLiS14eMdzUAlZuVDghGzcuHHFEYeISE41OpgdgYgpYkP/Sch84lVDVk7kqw+Z4Zi2RESkuB35DVJOmx2FiKkcUyh5+JzgTEomiWmZJkckxS1fCVmjRo34+OOPyci4+BQOu3bt4v777+ell14qkuBEpJzJzoLP74KpjWH/WrOjETGNYwolb98TAGq2LAfy1WT5+uuv88QTT/DAAw9w9dVXc8UVV1C5cmV8fX05c+YM27ZtY82aNfz111+MHDmS+++/v7jjFpGy6K8v4fRe+P/27jzOqepw//gnyewwKwMMwzbDqggKiiB7URSqVlBr5SsquKD9KW6AWltRS2tbARVFxaXF1ta9VVvRoohWVtlEEUQW2XTYnX2YNbm/P0ICI9ssSc5N8rxfL19zZ5JJnhhgnjnn3HMTMyC7p+k0Isb4RsiI3Q94+C7/IKdlpxrNJMFVp0J23nnnsWrVKhYvXszrr7/Oyy+/zI4dOygvLyczM5NevXpx7bXXMmbMGNLT04OdWUQikccDi2Z4j/vdAnHaCFOiV6smrbgw90K+2h7H144a9pXompaRrl6L+gcOHMjAgQODlUVEotk3c2H/NxCfCn1uMp1GxCiX08Ujgx9hSv46vrZ2sF+FLOJp62sRMc+yYOF073HfmyFBUzMiAJlN4wE4UKpCFulUyETEvM3zYc9aiG0C52gNqgiAx/IQG1+AM363RsiigLa/FhHz9n8Dzlg4+wZIyjCdRsQW5u+Yz+ytk0lo1Zb9paeajiNBpkImIuYNuB26XwYxiaaTiNiGfy+yuH3s31dhOI0EmwqZiNhDahvTCURspX1Ke5w48bgqOVC+H8uycDgcpmNJkDSokHk8HrZs2cK+ffvweDy1bhs8eHBAgolIFNi3ATxuyOpuOomI7cS54miT3IadJTtxu/ZSXFFDamKs6VgSJPUuZJ999hlXXXUVO3bsOOqSSg6HA7fbHbBwIhLh5j8Amz+En06HvtrqQuTHOqR1YGfJTpzx+9hfUqFCFsHqfZblL3/5S3r37s26devIz8+noKDA/19+vq4/JyJ1tOsLbxlzOKHTeabTiNjSkevI8gq1jiyS1XuEbPPmzfzzn/+kU6dOwcgjItHCtyt/959Ds45ms4jY1OGLjO8jr6DccBoJpnqPkPXt25ctW7YEI4uIRIt9G2DDu97jQZPMZhGxsTOan0GX+FFUF/Tn+wJdYDyS1WmEbO3atf7j2267jUmTJrFnzx569OhBbGzt+ezTTz89sAlFJPIsetT78dRLoMUpZrOI2FhOag7Ds8ex+otvyCvUCFkkq1Mh69mzJw6Ho9Yi/uuvv95/7LtNi/pF5KTyv4V1//IeD55sNotIGGidlgTA95qyjGh1KmTbtm0Ldg4RiRKOgh2QlAnZvaDVGabjiNhecpNyXE02811Jc6C/6TgSJHUqZO3bt/cfL1y4kP79+xMTU/tba2pqWLp0aa37ioj8mNXxXLhzLZQXmI4iEhY+2v0KSe1ep+iHwVTWjCY+xmU6kgRBvRf1Dx069JjbWxQVFTF06NCAhBKRCBebCCnZplOIhIVumd5dDZxx+9itrS8iVr0L2fEu3fDDDz/QpEmTgIQSkQhUsodWBSvA8pz8viLi1zHNuy2MM36/FvZHsDrvQ3bZZZcB3gX848aNIz4+3n+b2+1m7dq19O+vuW0ROTbn8mfos/0ZPO/ug8tfMB1HJGzkpuYC4IjN57uCYiDTbCAJijoXstTUVMA7QpacnExiYqL/tri4OM455xzGjx8f+IQiEv7KfsD5+V8B8Jx2ef2H5kWiWLOEZsTQhBpHGZvytwIdTEeSIKhzIXvxxRcByMnJYfLkyZqeFJG6++wZHNUHKUzMoUmHc02nEQkrDoeD9Ng27K/eyLYi7XoQqep96aQHH3wQgH379rFx40YAunbtSosWLQKbTEQiQ3khrHgegE1Zl9DrGGtQReTEWiW1Z3/RRnaX7zAdRYKk3jMHJSUlXHPNNbRu3ZohQ4YwZMgQWrduzdVXX01RUVEwMopIOFv5AlQWYzU/hd2pZ5pOIxKWBrcaQfmun0NpT9NRJEjqXchuvPFGli9fzty5cyksLKSwsJC5c+eyatUqbr755mBkFJFwVVkKy54BwD3gLnBo9ZhIQwxo04eaot4cKEgzHUWCpN5TlnPnzuWDDz5g4MCB/q8NHz6cF154gREjRgQ0nIiEudK9kJEL5elYp46CHR+YTiQSllqlJgBwoLSSqhoPcTH65SbS1LuQNWvWzH/G5ZFSU1NJT08PSCgRiRDNOsKNC6BsPzi1u7hIQ2U0iSO+yU48sbvYsO90zshuazqSBFi9K/b999/PxIkT2bNnj/9re/bs4e6772bKlCkBDSciEcDhgKY66UekMRwOB4mt/k1Cq3dYlrfGdBwJgnqPkM2ePZstW7bQrl072rVrB8DOnTuJj49n//79PPfcc/77fv7554FLKiLho6bKe2Zlr6shMc10GpGIkOxqTSF5bDiwxXQUCYJ6F7JRo0YFIYaIRJS1r8GHv4HP/wa3rvCOkolIo7RMbEdh5Qp2lmw3HUWCoMH7kImIHJO7BhY95j0+c6zKmEiA5KTksnE/7KvYaTqKBEGDTtMoLCzkz3/+M/fddx/5+fmAd3oyLy8voOFEJAytfwsKtkFiBvS+znQakYjRLbMTAKWePCzLMpxGAq3eI2Rr165l2LBhpKamsn37dsaPH09GRgZvvfUWO3fu5KWXXgpGThEJBx4PLJzhPe53K8TpEmsigdKrVWesrx14HBXsL99PiySdLBNJ6j1CNnHiRMaNG8fmzZtJSEjwf/3CCy9k4cKFAQ0nImHmm3fhwEaIT4U+402nEYkoHTLTsKqaAbDhwGbDaSTQ6j1CtnLlylpnUvq0bt261lYYIhJlLAsWTvce970ZEo7er1BEGi41MRZX4aWUlTtIdXYyHUcCrN4jZPHx8RQXFx/19U2bNtG8efOAhBKRMFRVBi1O846OnfP/TKcRiUjtE8/EXd6BfUVaQxZp6l3ILrnkEqZOnUp1dTXg3axu586d3HvvvVx++eUBDygiYSK+KVz2HNy1DpIyTKcRiUi+SyjtLak0nEQCrd6F7NFHH6W0tJQWLVpQXl7OkCFD6NSpE8nJyTz88MPByCgi4SQhxXQCkYiV1tQiJnUl83fpBLpIU+81ZKmpqcyfP5/Fixezdu1aSktLOfPMMxk2bFgw8olIOFj0KJxyMTTvajqJSETLSIohMftfrCmB4qo7SInTL0CRot6FzGfgwIEMHDgwkFlEJBzt/AwWTIX/PQKTvtF0pUgQtUpJx/N9Cs7YYrYWbqVni56mI0mA1GvK0uPxMGfOHC6++GK6d+9Ojx49uOSSS3jppZe0SZ1ItPLtO3bGlSpjIkGW2TQeT6V3/7FtRdsMp5FAqnMhsyyLSy65hBtvvJG8vDx69OjBaaedxo4dOxg3bhyXXnppMHOKiB3tWgNb5oPDCQPvMp1GJOI1axqHp8pbyLYWbTWcRgKpzlOWf/3rX1m4cCELFixg6NChtW77+OOPGTVqFC+99BLXXnttwEOKiE0tetT7sccVkNHBbBaRKJDZNE4jZBGqziNkr776Kr/+9a+PKmMA5557Lr/61a94+eWXAxpORGxs3wbY8C7ggIETTacRiQrNmsTjqfLu+fltoUbIIkmdC9natWsZMWLEcW//6U9/ypdffhmQUCISBnyjY90ugRanmM0iEiVSE2OhuiUAu0rzqHRrP7JIUedClp+fT8uWLY97e8uWLSkoKAhIKBEJAy26QVIzGDTJdBKRqOF0OmjZJJODO25kxjlvEOeMMx1JAqTOa8jcbjcxMce/u8vloqamJiChRCQMDJoI/W6FmHjTSUSiSvuMJuza2omSsiY4HA7TcSRA6lzILMti3LhxxMcf+x/fykoNm4pEHZUxkZBrl5HEsq0/sDP/oOkoEkB1LmRjx4496X10hqVIFFj2DGTkQpcRoN/ORUKuXbMknHF7WbB3CenruzL2tJP/fBb7q3Mhe/HFF4OZQ0TCQfFu+OghcFfC9R9Cu76mE4lEnbYZSThiC9he8y7//vYbFbIIUe+Li4tIFFv2lLeMtT0H2vYxnUYkKrXLSPJvfbGjaAduj9twIgkEFTIRqZuyA7Bqjvd48N2arhQxpF1GElZ1OpYnhipPFXmleaYjSQCokIlI3Xz2DFQfhFY9odN5ptOIRK30pFiaxsf5R8l0CaXIoEImIidXXggrXvAea3RMxCiHw0HbjCT/JZRUyCKDCpmInNyK56Gy2LsZbNcLTacRiXpt0xMPj5DpEkoRQYVMRE4u63TI6uHdld+pfzZETDtyhOy7ku8Mp5FAqPO2FyISxbqOgC7DwbJMJxERoE16IjVlXTjLMZ05Iy4wHUcCQIVMROrG4dDaMRGbaJueBJ4EDhQ1wenQqHUk0LsoIsf3xauw5AmoLDGdRESO0CYjEYDvC8oNJ5FAUSETkWOrqYKPfwfzH4Cv3jSdRkSO0CY9CYDSmFXc+fFE5m2bZziRNJYKmYgc25evQnEeNM2CM64ynUZEjtA0Pob0pFic8btY8N18Vu1dZTqSNJIKmYgczV0Dix/zHg+4HWITzOYRkaO0zUjCU+U903Jb0TbDaaSxVMhE5Gjr34KC7ZDUDM4aZzqNiBxDm/REPJXarT9SqJCJSG0eDyyc4T3udyvENTGbR0SOKTs10T9CdqD8AMVVxYYTSWOokIlIbd+8Cwc2QkIqnD3edBoROY6s1ATwJBBHOqBpy3CnQiYitWV2hdMug3NugYQU02lE5DhapXq3vohxtwR0CaVwp41hRaS2FqfAFS9qV34Rm8tK9Z5sU1PRgpjkLRRWFpoNJI2iQiYix6Zd+UVsrdWhQla8axjrH5pJXEys4UTSGJqyFBGvrZ/CvyfAD9+aTiIiddA8OR6nA6pr4igq95iOI42kQiYiXgunw5q/w/LnTCcRkTqIdTlpnhwPwJ6iCsNppLFUyEQEdiyD7YvAGevdCFZEwkLWoYX9T6+dxpVzr2RzwWbDiaShVMhEBBYd2nes5/9BahuzWUSkzlqleNeRbS3ZxNc/fM2Wwi2GE0lDqZCJRLu8z2HLR+BwwsC7TKcRkXpok+4dIUuwWgHaiyycqZCJRLtFj3o/9rgCMjqYzSIi9eIrZNahHft1CaXwpUImEs32fg3fzAUcMHCi6TQiUk9t0pMAOFjWDFAhC2fah0wkmiVnwZB7oWS3d0NYEQkrbTK8I2Q/FKRBEuwo2oHb48bldJkNJvWmQiYSzZIyYOivTacQkQZqneYtZIXFTWnWLp4qdyV5pXm0S2lnOJnUlwqZiIhImEpOiCUtKZbCg9W0aZKLm3KKKotMx5IG0BoykWhUsAP+erH37EoRCWu+hf0Tuj7J3Evn0qN5D8OJpCFUyESi0ZInvBvBLp1lOomINFKbNO/C/l2FlYaTSGOokIlEm+Ld3kskAQyabDaLiDRa9qF1ZLsKyw0nkcZQIROJNktngbsK2vWDnIGm04hII7VI8V7P8vuSvYx5fwzD/zkcy7IMp5L60qJ+kWhSdgBWzfEeD54MDofZPCLSaJlNvYWssDSGdZXr8Fge9pfvp0VSC8PJpD40QiYSTZY9DTXlkN0LOp5nOo2IBEDzZG8h+6HEQ9vktoA2iA1HKmQi0aK8AFa84D0efLdGx0QiRPNDI2QHSivJTc0FYGuhClm4USETiRZxyXDx49BtFHT5qek0IhIg/hGysipyUg4VMo2QhR2tIROJFq4YOP0K738iEjEymsThdIDHghYJ3h36txVtM5xK6ksjZCLRQGdciUQsl9NBRhPvKFmKqzWgEbJwpEImEumqy+H5n8Bns6FGG0eKRCLftGWcJ4vsJtl0zehKtbvacCqpD01ZikS6z/8Ou7+Ag/lw9o2m04hIEGQ2jQOgrCKWD37+geE00hAaIROJZDVVsGSm93jgneCKNZlGRIIko4m3kBWUVRlOIg2lQiYSyb58FYrzILkV9BxjOo2IBEl6kreQ5R88XMiq3Cpn4USFTCRSuWtg8WPe4/63Q2yC2TwiEjTNjhghW7BjAUNeH8LE/000nErqQ4VMJFKt+xcUbIekTDhrrOk0IhJE6YcK2Q9lVSTHJZNfka8zLcOMCplIJLIsWPSo97jfLRDXxGweEQmqI0fIOqR1ACCvNI9Kt86sDhcqZCKRyOGAy56DHlfA2eNNpxGRIPONkOUfrKJZQjOS45LxWB62F203G0zqTIVMJFJl94LL/wwJKaaTiEiQ+c6yzC+rwuFw0CHVO0qmHfvDhwqZSKTxeEwnEJEQ8xWyovJqatwefyHTOrLwoUImEkksC/52McydCKX7TKcRkRBJS/TuMWhZUFJRo0IWhlTIRCLJ1v/BjiXwxcumk4hICMW4nCTGugBvIevWrBt9W/Xl1IxTDSeTutKlk0QiycIZ3o9njYOmLYxGEZHQSk6IobzaTXFFNX1a96FPqz6mI0k9aIRMJFLsWAo7FoMz1rsRrIhEleQE7xhLcYUuKh6OVMhEIoVvdKzXGEhtbTaLiIRccoJ3HVlJRY3/a6VVpZRUlZiKJPWgQiYSCfJWw7cLwOGCAXeaTiMiBvhGyHyF7HfLfke/V/vx5qY3TcaSOlIhE4kES57wfuxxBWTkms0iIkak+EfIvFOWmUmZAGwt1JmW4UCL+kUiwYWPQkYHOOP/TCcREUN+PEKmzWHDiwqZSCRo2hyGPWQ6hYgYdLiQeUfIjtyLzLIsHA6HsWxycpqyFAlnNVWmE4iITfj2Iaus8V6to31Ke5wOJ6XVpewv328ymtSBCplIOJt7F/ztZ7D7S9NJRMQwl9P7I73abQEQ54qjbXJbQDv2hwMVMpFwVbAD1r4G2xaCW/sOiUS7GJd3StJ9xPVsc1O9J/loYb/9aQ2ZSLha8gR4aqDDUGjT23QaETEsxuktZDWHRsgABrcZTGZiJp3SOpmKJXWkQiYSjop3w5q/e48H3202i4jYQozLO+lV4zlcyK7ocoWpOFJPmrIUCUdLZ4G7Ctr1h5wBptOIiA34R8iOmLKU8KFCJhJuyg7Aqjne48GTzWYREdvwrSE7csoSoLymnA0/bKCipsJELKkjFTKRcLP6r1BTDtlnQsdzTacREZvwjZC5PbUL2c/e/hm/mPsLNhZsNBFL6sh4IcvLy+Pqq6+mWbNmJCYm0qNHD1atWuW/3bIsHnjgAVq1akViYiLDhg1j8+bNtR4jPz+fMWPGkJKSQlpaGjfccAOlpaWhfikioTHgDhj5jHcjWG30KCKHxPi2vfhRIctJzQF0pqXdGS1kBQUFDBgwgNjYWP773//y9ddf8+ijj5Kenu6/z7Rp03jyySd59tlnWb58OU2aNGH48OFUVBweeh0zZgzr169n/vz5zJ07l4ULF3LTTTeZeEkiweeKhV5joMMQ00lExEYSDm0MW1HtrvV1XUIpPBg9y/KRRx6hbdu2vPjii/6v5eYevjCyZVnMnDmT+++/n5EjRwLw0ksv0bJlS9555x1Gjx7Nhg0bmDdvHitXrqR3b++p/7NmzeLCCy9kxowZZGdnH/W8lZWVVFZW+j8vLi4GoLq6murqxu/n5HuMQDyWNE5EvRc1FeBweQtZGIqo9yLM6b2wj0C+F/Eu78hYWWXtn2Xtm7YHYEvBFr3nx2GH/y8Oy7Ksk98tOLp168bw4cP5/vvv+fTTT2ndujW33HIL48ePB2Dr1q107NiRNWvW0LNnT//3DRkyhJ49e/LEE08wZ84cJk2aREFBgf/2mpoaEhISePPNN7n00kuPet6HHnqI3/72t0d9/ZVXXiEpKSnwL1QkADrtfY/cAwtYnz2aXel9TMcREZv5thieXB9DiwSL3/Q6PEq2tXorc8rmkOHMYGLKRIMJ7evgwYNcddVVFBUVkZKSYiSD0RGyrVu3Mnv2bCZOnMivf/1rVq5cye23305cXBxjx45lz549ALRs2bLW97Vs2dJ/2549e2jRokWt22NiYsjIyPDf58fuu+8+Jk48/IeyuLiYtm3bcsEFFwTkjaiurmb+/Pmcf/75xMaG52hGpIiY96L6IDFPT8JRdYBePU6l5+kXmk5UbxHzXkQAvRf2Ecj3Yv2uYp5c/xmO2AQuvPDwkoYD5QeY8/YcCq1Czht+HvGu+MbGjji+mTKTjBYyj8dD7969+cMf/gBAr169WLduHc8++yxjx44N2vPGx8cTH3/0H8jY2NiA/uMU6MeThgv792L1q1C2H9LaEdPzyrCdtoQIeC8iiN4L+wjEe5HWJAGAg1XuWo+VFZNFclwyJVUl5B3Mo2tG10Y9TySyw98Do4v6W7VqRbdu3Wp97dRTT2Xnzp0AZGVlAbB3795a99m7d6//tqysLPbt21fr9pqaGvLz8/33EQlrNZXeyyQBDLwrrMuYiARPUrx3UX9ZVQ1HrkZyOByM7TaWu866i7T4NEPp5GSMFrIBAwawcWPtfVE2bdpE+/beBYi5ublkZWWxYMEC/+3FxcUsX76cfv36AdCvXz8KCwtZvXq1/z4ff/wxHo+Hvn37huBViATZF69AyS5IbgU9x5hOIyI21STOO+nlsaCiuvZu/TefcTPXd7+elk1aHutbxQaMTlnedddd9O/fnz/84Q/84he/YMWKFTz//PM8//zzgLfV33nnnfz+97+nc+fO5ObmMmXKFLKzsxk1ahTgHVEbMWIE48eP59lnn6W6upoJEyYwevToY55hKRJW3DWw+HHvcf/bIUZrP0Tk2BJjXTgcYFneUbLEOJfpSFIPRgvZ2Wefzdtvv819993H1KlTyc3NZebMmYwZc3gU4J577qGsrIybbrqJwsJCBg4cyLx580hISPDf5+WXX2bChAmcd955OJ1OLr/8cp588kkTL0kksLb+Dwp3QFImnBW8dZUiEv6cTgdJsS7KqtyUVdaQ2fTwL3A1nhq2F21n78G9DGit69/akdFCBnDxxRdz8cUXH/d2h8PB1KlTmTp16nHvk5GRwSuvvBKMeCJmdR4G138IJbshronpNCJic4lx3kL24ynL3WW7ufQ/lxLnjGPFmBW4nBo9sxvjhUxETqKd1kKKSN34dusv/9Fu/dlNsol3xVPpriSvNI92Ke1MxJMTMH4tSxE5BsuCsgOmU4hImEn0FbKq2oXM5XSRk5IDwNYiXdPSjlTIROxo0zx4vDt8/HvTSUQkjPgW8pdX1xx1m++alipk9qRCJmI3lgULp0NNObjNX19NRMKHf8qyynPUbblp3mtFby1UIbMjFTIRu9n6CeSthphE6DfBdBoRCSOJx1lDBpCb6i1k24q2hTST1I0KmYjdLHzU+/GscdC0udEoIhJeTlTIjpyyPHInf7EHnWUpYic7lsGOxeCKg/63mU4jImHGt4asouroQpaTksOEnhPokNYBj+XB5dDWF3aiQiZiJwunez/2vApSW5vNIiJhx7eG7OAxClmcK46bz7g51JGkjjRlKWIXRd/D9sXgcHkvIi4iUk8nmrIUe9MImYhdpLaBO770lrL0HNNpRCQMJfmmLI9TyH4o/4G1+9cSHxNP/+z+oYwmJ6ERMhE7SWkFp19hOoWIhCnfGrKDVUfvQwawKG8Rt39yO3/56i+hjCV1oEImYgcFO0wnEJEIcHjK8uh9yECbw9qZCpmIaQc2w5M94R8/h5oq02lEJIz5pizLjzNC5tuL7ED5AYqrikOWS05OhUzEtMWPg+UBVyzExJlOIyJh7PCU5bHXkCXHJdMisQWgHfvtRoVMxKSCHfDla97jQZPNZhGRsFeXsyx9l1DSjv32okImYtKSmWC5ocNQaHOW6TQiEuaS4rybJ5QfZ4QMtI7MrlTIREwp3gVr/uE9HqzRMRFpvIRY74/1E42QqZDZk/YhEzFl6SxwV0G7/pAz0HQaEYkAsS5vIatxH/9alQNaD2Da4Gl0Te8aqlhSBypkIia4a2DTB95jjY6JSID4ClmV+9jbXgC0TW5L2+S2oYokdaRCJmKCKwZuWQbfvAcdzzWdRkQiRFyMA4DqExQysSetIRMxJSYeul8GDofpJCISIWKcJ5+yBFi7fy0vrX+JdQfWhSKW1IEKmUio7f3aO2UpIhJgsTEnn7IE+OemfzJ91XQWfr8wFLGkDlTIREKpohhe/Ck8fbYulyQiARfrrNuUpc60tB8VMpFQWvUXqCgEhwtS25hOIyIRxreo37LA7Tn+tGWHNBUyu1EhEwmVqoOw9Cnv8aBJ4HSZzSMiEcc3ZQknHiXzXdNyR9EO3J7j71kmoaNCJhIqn/8NDh6AtHbQ4+em04hIBIpxHj5JqLLm+IUsu0k28a54qjxV5JXmhSKanIQKmUgo1FTCkie8xwPv8l5IXEQkwOJch3+s15xghMzldJGTkgNo2tIuVMhEQuGLl6FkNyS3gp5jTKcRkQjldDr8o2QnO9NSC/vtRRvDioTCjqXejwPu8O4/JiISJHExTmqq3FTXnHgvsht63MC1p13rL2ZilgqZSChc9gKcNQ6yzzSdREQinPdMSzdV7hMv1u+aoWtZ2okKmUgoOBy6gLiIhEScb3PYk4yQib1oDZlIMO1dDwfzTacQkSgSV4cLjPu8sfENHv7sYX4o/yHYseQkVMhEgsXjgX+Nh5k94NuPTacRkSjhGyGrywXG/7b+b7y28TU2F24Odiw5CRUykWDZNA/2rQcc0Kqn6TQiEiX8I2Qn2IfMx3+mZaHOtDRNhUwkGCwLFk73Hp99AyRlmM0jIlHj8Bqykxey3DTvjv3a+sI8FTKRYPj2Y9j1OcQkQr8JptOISBTxFbIT7dTv4xsh2160PZiRpA5UyESCYeEM78fe10HT5maziEhUqc+ifm0Oax8qZCKBtn0J7FwKrjjof5vpNCISZfwjZNUnv2i47yLj+8v3U1JVEtRccmIqZCKBtucrcMZAr6shJdt0GhGJMvExdR8hS45LpkViCwB2FO8Iai45MW0MKxJo5/wSTrnQO0ImIhJi9VnUD/Dc+c/RPKk5qfGpwYwlJ6FCJhIMae1MJxCRKFXfQtYpvVMw40gdacpSJFB++Na7M7+IiEHx9SxkYg8qZCKB8vHvYHZ/WDrLdBIRiWLxMS6gbtteAOw/uJ9HVjzC/YvvD2YsOQkVMpFA2L8J1r/jPe4w1GgUEYluLqcDgBpP3S4u7nA4+MeGf/Cfb/9DpbsymNHkBFTIRAJh8WOABV0vgqzuptOISBRzHPpoUbdC1iyhGclxyVhY2iDWIBUykcbK3wZr3/AeD55kNouIRD3H4UZWx/s7/BvEbivaFpxQclIqZCKNteQJsNzQ8TxofZbpNCIS5RyHGlkd+xigHfvtQIVMpDGK8uCLl73Hg+82m0VEhCOmLK26VzIVMvO0D5lIY/ywBRLSILMztO9nOo2IiL+R1aOP0SFNhcw0FTKRxugwBO5cC2X7TScREQHA2YApy9wU7zUtCysK8VgenA5NoIWaCplIY8Umamd+EbEN35Slpx5DZK2TW/PJLz6hWUIz/xo0CS1VYJGGOJgPX/8bPNoJW0TsxdGAKUunw0lmYqbKmEEqZCINsfw5eONa+Od1ppOIiNTiVKkKSypkIvVVUQzLZ3uPTxtlNIqIyI81ZMoSYNmuZUxYMIEnPn8i8KHkpLSGTKS+Vv4ZKoogswuceonpNCIitfimHetbyIqqivj0+08pqCgIRiw5CY2QidRHVRkse8p7PGgSOF1m84iI/Ij/LMv69bFae5HVZw8zCQwVMpH6WP03OPgDpLWH7j83nUZE5Ci+JWR1vLa4X05KDk6Hk9LqUvaXayufUFMhE6mr6gpY+qT3eNBEcGnGX0Tsx+k/y7J+jSzOFUebpm0AXdPSBBUykboq3QvJrSClNZzxf6bTiIgcU0PXkIEuoWSSCplIXaW3h/Efw40fQUy86TQiIsfU0ClLgNw07479WwtVyEJNhUykPhwOSMk2nUJE5LicjRwhS4pJwmNp0+tQ0yIYkZPxuGHlX+CMKyEh1XQaEZET8q0hq9fFLA+5qMNFjOw4Ujv2G6ARMpGT+frf8N+74dlB3nImImJjvhEydwNGyGKdsSpjhqiQiZyIxwMLZ3iPe47RvmMiYnuHpywNB5F6USETOZFN82DfeohLhr43mU4jInJSTv+i/oY1stlfzmbkOyN599t3A5hKTkaFTOR4LAsWTvce9xkPielm84iI1IHL6dupv2GFrKCigK1FW9lcsDmQseQkVMhEjufbj2HX5xCTCP1uNZ1GRKROfGvA3A2cs9ReZGaokIkcj2/tWO/roEmm2SwiInXU2DVkKmRmqJCJHEt1BaS1g9gk6H+b6TQiInXmOvSTvaFTlh3SvIUsrzSPSndloGLJSaiQiRxLbAJc9hxM/FobwYpIWGnslGWzhGYkxyXjsTxsL9oewGRyIipkIieihfwiEmZinL59yBr2/Q6Hwz9tqYuMh44KmciPLXsG9m80nUJEpEF8Z1m6PQ2//NGpGafSJb2LNokNIV06SeRIu9fCB/fB/Bi462tIbmk6kYhIvcQ4vWMtNQ0dIgN+c85vAhVH6kgjZCJHWvSo92O3kSpjIhKWDo+Qaav+cKJCJuKzf6P3upUAgyaZzSIi0kC+NWQ1AShkbo+7wWdrSv2okIn4LH4csOCUi6HlaabTiIg0iMvV+BEyy7IY8/4Y+r7Sl+9KvgtUNDkBFTIRgPxtsPYN77FGx0QkjAVihMzhcFBRU0Glu1IbxIaICpkIwJKZYLmh43nQ+kzTaUREGiwQZ1mCduwPNRUyEYCMDpCYAYMnm04iItIorkNbVTTmLEs4opAVqpCFgra9EAEYcAf0uQliE00nERFplBjfGrJGLsbPTcsFtDlsqGiETMRHZUxEIoCzkZdO8jlyylJnWgafCplEt1VzYON/Qf/YiEiE8G0M29hClpOSg9PhpLS6lP3l+wMRTU5AU5YSvQ7mw4dToKoUrnkHOg41nUhEpNEO9bFGF7I4Vxz9s/uT4Eqg0l0ZgGRyIipkEr2WP+ctYy17QIefmE4jIhIQgRohA5g9bHajH0PqRlOWEp0qimH5oX9oBk8GXUBXRCKE69BP9kDs1C+ho0Im0Wnln6GiCDK7wqmXmE4jIhIwrkMjZJ4AFTLLsiisKAzIY8nxqZBJ9Kkqg2VPe48HTTq84EJEJAL49yELQCHbXLCZfq/249L/XNrox5IT008iiT6r/wYHD0B6DnS/3HQaEZGA8i/qD8DZ462atKKsuowD5QcoqSpp9OPJ8amQSfRp1sm7kH/gXeDSeS0iEll8+5ARgBnLpnFNaZHYAtAllIJNP40k+nS5ADqfD1bjrvMmImJHvkLmCdD+irlpuewr38fWwq2c0fyMgDymHE0jZBKdHA5wukynEBEJuEPXFg9YIfPt2K9LKAWXCplEj/XvwJInobLUdBIRkeAJ3IwlUPsSShI8mrKU6OBxw4KpkP8tOJzQf4LpRCIiQeGbsrQs75YVjkbus6hCFhoqZBIVHBv+7S1jielw1ljTcUREgsZ5RAGzrMbve90xrSND2gyhU1qngBQ8OTYVMol8lgfXkse9x+fcAvHJZvOIiASR84i+FIhpy2aJzXjqvKcC8EhyIlpDJhEvq2gNjv0bID4F+txkOo6ISFAdOYIViOtZSmiokElksyy67P2P9/jsGyExzWgcEZFgc9QaIQvc5ZMOlB9gV+mugDyeHE2FTCKaY+snpB/chhWbBP1uNR1HRCTojlzhFaCdL/jHhn8w9I2hPLb6scA8oBxFa8gkolmpbchL60NW1964mmSajiMiEnTBWHTfLrkdoDMtg0kjZBLZMruwKncCnvN+azqJiEhIBGOEzLf1xY6iHbg97sA8qNSiQibRQadpi0iUCMYasuym2cQ546jyVJFXmheQx5TaVMgkMn2/Cv5zGxToUh8iEl0c1N6HLBBcThc5qTmApi2DRYVMItPC6fD5S7gWP246iYhISDkCvA+Zj3bsDy4VMok8u7+ETfPA4cTd/3bTaUREQqpWIQvUEBlHFLJCFbJg0FmWEnkWPer9eNpl0KwTsMloHBGRUDpyyjKQ+8KenXU2V1ddzdlZZwfuQcVPhUwiy/6N8PWhjWAHTTSbRUTEgFrnMAWwkPXO6k3vrN6Be0CpRVOWElkWPQZYcMrF0PI002lEREKudh/TpZPChQqZRI78rfDVm97jwZPNZhERMeTIjWEDuIQMgKLKIr7Y9wV7y/YG9oFFhUwiSGK6t4h1/zlk9zKdRkTEiCDNWAJw/+L7uea/17Bg54IAP7JoDZlEjsR0GPpr0ylERIwK1lmWALlpufzv+/9p64sg0AiZiIhIBKk1ZRngx/ZtfbG9aHuAH1lUyCT8le6Dl0bClo8Cv2BCRCQM+TqZJ8D/Jmpz2ODRlKWEv2VPwdb/QWUpdDzPdBoREeMcHBodC/DvqLmpuQDsL99PSVUJyXHJgX2CKKYRMglvB/Nh5V+8x0Pu0UXERUQ4PG0Z6DmD5LhkWiS2ADRKFmgqZBLelj8LVaWQ1QM6X2A6jYiILfh+NQ3GKo7cNO8omS6hFFiaspTwVVHkLWQAg+/W6JiIyCG+fw6DsTHsz7v8nHPbnkuvFtpeKJBUyCR8rfyzt5RldoVTfmY6jYiIbTgOrSILxgjZiJwRgX9Q0ZSlhKmqMlj2tPd40CRw6o+yiIiff4RMwoV+ikl4csXDiEeg83DofrnpNCIitnJ4DVngK5llWaw/sJ53v32XSndlwB8/WmnKUsKTKwZOv8L7n4iI1OJfQxakIbLx88dTUlVCl/QudM3oGpwniTIaIRMREYkwTt+2F0EoZA6Hw79B7LaibYF/giilQibhxV0Nc0bAZ89CdYXpNCIituSfsgzSKjLt2B94KmQSXta+ATuXwaJH0XJVEZFjcwRxhAzQCFkQqJBJ+PC4DxUxoP8EiE00m0dExKaCvStjhzRvIfu26NsgP1P0UCGT8LH+bcj/FhLTofcNptOIiNhesOYRfNe03FG0A7fHHaRniS4qZBIePJ7Do2Pn3ALxTc3mERGxsyAPkWU3ySbeFU+Vp4q80rzgPlmU0LYXEh42vg/7vob4FOhzk+k0IiJhIRj7kAG4nC6mnDOFjIQMMhMzg/Ic0UaFTOzPsmDRDO9xn/GQmGY0joiI3YXiyr4jO40MwbNED01Ziv05HHDRY3Dapd7pShERqROdix4+NEIm4aH1mXDFX02nEBEJC8He9gKgqLKIpbuWUlpdyhVddNWUxlIhE3uzrMPXABERkToJxT+bew/u5Z6F99A0tik/7/xzfwmUhtGUpdjbK1fCe5OgZK/pJCIiYSh4Q2Q5KTk4HU5Kq0vZX74/aM8TLVTIxL6+WwGbP4DVfwV3pek0IiJhIxRjVXGuONo0bQNox/5AUCET+1p46MzKM0ZDWjuzWURE5Ci6pmXgqJCJPe3+0js65nDCwImm04iIyDHkpnl37N9aqELWWCpkYk++0bHTLoNmHc1mERGRY9JFxgNHhUzsZ983sOFd7/GgSWaziIjIcWnKMnC07YXYz9InAQtOuRhadjOdRkREjqNTWieeGPqEv5hJw6mQif0MewiaNPfuzC8iIraVFJvEue3ONR0jIqiQif00bQHn/9Z0ChERkZBRIRP7cNeAS38kRUTCycb8jXz6/ae0TW7LT3N/ajpO2NKifrGPD+6Dv10Cu9aYTiIiInW0Zt8aZq2ZxXtb3zMdJaxpOELsoWQvrP6bd0f+imLTaUREIkIwLy7uozMtA0MjZGIPy2Z5y1ibPpA72HQaEZGw5rvQdwj6GB3SvIUsrzSPSl3mrsFUyMS8g/mwco73ePDd4AjFVdhERCJXKP8VbZbQjOS4ZDyWh+1F20P4zJFFhUzM+2w2VJdB1unQ+XzTaUREIkYopiwdDod27A8AFTIxq6IIlj/nPR48WaNjIiIBEOp/SnNTD13TUuvIGkyFTMxa8w+oLILMrnDKz0ynERGJKFZIVpHpmpaBoLMsxayzx0NCKiRlglO/H4iIBEZoh8gu7nAxg1oPol1Ku5A+byRRIROzYuKg19WmU4iIRKRQrCEDaJ7UnOZJzUPzZBFKQxJiRk0VuKtNpxARiUi+NWShKmTSeCpkYsaal2DWmfDVP00nERGJOL4Jy1CtIQN499t3mbJkCmv26WorDaFCJqHnrobFM6FwJ5QXmE4jIhJxnL6NYUM4Qrbw+4W8s+UdFbIGUiGT0Fv7OhR9B01bav2YiEgQmJiy9F9CqVBbXzSECpmElscNix71Hve/DWITzeYREYlAJqYsc9O8e5Fp64uGUSGT0Fr/NuRvhcQMOOs602lERCKS71qWHhMjZEVbsXQ2Qb2pkEnoeDywcIb3uN8tEN/UbB4RkQgXymKUk5KD0+GktLqU/eX7Q/a8kUKFTEJnxxLYvwHiU7wbwoqISFD415CF8DnjXHG0adoG0CWUGkIbw0ro5A6C6z+Egu2QmGY6jYhIxDK1D1mH1A7sLNnJ7tLdoX3iCKBCJqHVrq/3PxERCRrHEcv6Q+mBfg8wLW4aiTE6Yau+NGUpwWdZcDDfdAoRkajhCO2lLP2aJzVXGWsgFTIJvu2L4bFu8NFDppOIiEQVnewYPlTIJPgWToeacqgsNZ1ERCQqGBogw+1xM3XZVMbNG0dJVYmhFOFJhUyC67sVsO1TcMbAgDtMpxERiSqhHiBzOV18+t2nrN67Wmda1pMKmQSXb9+xM0ZDWluzWUREooTDwLUsfXw79usSSvVjtJC53W6mTJlCbm4uiYmJdOzYkd/97ne1NrKzLIsHHniAVq1akZiYyLBhw9i8eXOtx8nPz2fMmDGkpKSQlpbGDTfcQGmppseM2/0lbP4AHE4YONF0GhGRqGFqyhIO79ivSyjVj9FC9sgjjzB79myeeuopNmzYwCOPPMK0adOYNWuW/z7Tpk3jySef5Nlnn2X58uU0adKE4cOHU1FR4b/PmDFjWL9+PfPnz2fu3LksXLiQm266ycRLkiP5Rse6Xw7NOprNIiIShUxcwujISyhJ3Rndh2zp0qWMHDmSiy66CICcnBxeffVVVqxYAXj/IM2cOZP777+fkSNHAvDSSy/RsmVL3nnnHUaPHs2GDRuYN28eK1eupHfv3gDMmjWLCy+8kBkzZpCdnW3mxUW70v2w+UPv8aBJZrOIiEQbg0NkKmQNY7SQ9e/fn+eff55NmzbRpUsXvvzySxYvXsxjjz0GwLZt29izZw/Dhg3zf09qaip9+/Zl2bJljB49mmXLlpGWluYvYwDDhg3D6XSyfPlyLr300qOet7KyksrKSv/nxcXFAFRXV1NdXd3o1+V7jEA8VtiKT4P/txLH1o+x0juBof8Xei/sQ++Ffei9sI+gvReHRsaqa2pC/j63beJdL5xXmkdpRSnxrviQPn9D2OHvgtFC9qtf/Yri4mJOOeUUXC4Xbrebhx9+mDFjxgCwZ88eAFq2bFnr+1q2bOm/bc+ePbRo0aLW7TExMWRkZPjv82N//OMf+e1vf3vU1z/88EOSkpIa/bp85s+fH7DHCl/psOt90yH0XtiI3gv70HthH4F+L8rKXICD5Z99xg8bAvrQJ2VZFomORGKI4c333yTDlRHaAA1w8OBB0xHMFrI33niDl19+mVdeeYXTTjuNL774gjvvvJPs7GzGjh0btOe97777mDjx8CLz4uJi2rZtywUXXEBKSkqjH7+6upr58+dz/vnnExsb2+jHCzvFuyDFHlPFUf9e2IjeC/vQe2EfwXovnti8BMrL6HvOOfTNDX0hOrfm3LDasd83U2aS0UJ2991386tf/YrRo0cD0KNHD3bs2MEf//hHxo4dS1ZWFgB79+6lVatW/u/bu3cvPXv2BCArK4t9+/bVetyamhry8/P93/9j8fHxxMcfPYQaGxsb0L8QgX68sFD4HTx9FnQcClf8DeICN+LYGFH5XtiU3gv70HthH4F+L5xO7yIylyvGyHscbn+u7JDX6FmWBw8exOmsHcHlcuHxeADIzc0lKyuLBQsW+G8vLi5m+fLl9OvXD4B+/fpRWFjI6tWr/ff5+OOP8Xg89O2ri1iH3JInwFMNNRW2KWMiItHKCvnWsNJQRkfIfvazn/Hwww/Trl07TjvtNNasWcNjjz3G9ddfD3g3trvzzjv5/e9/T+fOncnNzWXKlClkZ2czatQoAE499VRGjBjB+PHjefbZZ6murmbChAmMHj1aZ1iGWsle+Pwl7/Hgu81mERGJYib3IQPYUrCFP638Ey6Hi+fOf85wmvBgtJDNmjWLKVOmcMstt7Bv3z6ys7O5+eabeeCBB/z3ueeeeygrK+Omm26isLCQgQMHMm/ePBISEvz3efnll5kwYQLnnXceTqeTyy+/nCeffNLES4puy2aBuxLa9oWcQabTiIiIoQGyeFc8y3cvJ84Zh9vjxuV0mQkSRowWsuTkZGbOnMnMmTOPex+Hw8HUqVOZOnXqce+TkZHBK6+8EoSEUmcH82HlHO/xoMngMP37mYhI9DL9T3B202ziXfFUuivZVbqLtim6dN7J6FqWEhifPQPVZZB1OnQ+33QaERHB2AAZLqeLnJQcQBvE1pUKmTSexwMb5nqPB99t/lczEZEo5zC+ikw79teX0SlLiRBOJ9z8Kax/B0652HQaERGxgdy0XAC+LfzWcJLwoEImgRETD2dcaTqFiIjYRG6qt5BtK9pmOEl40JSlNM6BLeBxm04hIiI20yG1AxkJGWQk2P/SSXagETJpuOoK+OuFENcUxrwJzTqaTiQiIjbROa0zn175qekYYUMjZNJwa/4OpXvBXQWpOqVZREQOc+gEr3pRIZOGqanyXiYJYMAdEBNnNo+IiNiWZekSTiejQiYNs/Z1KPoOmraEXlebTiMiIjb09ua3GfGvEfxxxR9NR7E9FTKpP3cNLH7Me9xvAsQmms0jIiLHZHpgyuFwkFeax9ZC7UV2MipkUn/r34b8rZCYAb2vN51GRER+xLd8yzK2V7+XNoetOxUyqb+t//N+7HcLxDc1GkVERI7P9AiZby+y/eX7KakqMRvG5lTIpP5GPgVj58LZ400nERGRY3AeGiIzvZQ+OS6ZFoktAI2SnYwKmdSfwwG5gyAxzXQSERE5Bv+UpekhMg5fQknryE5MhUzq7sBmOJhvOoWIiJzE4TVk5vnWkekSSiemQiZ1Y1nwzi0wswds+tB0GhEROQEH9mlk3Zp14/Tmp9OySUvTUWxNl06Sutm+CL5fAa54aHWG6TQiInICzkN9zGODKctRnUYxqtMo0zFsTyNkUjcLp3s/nnktJOu3HBERW/Mt6jffx6SOVMjk5HYuh20LwRnjvUySiIjYmtM+M5Z+Ve4qqtxVpmPYlgqZnNyiGd6PZ/wfpOki4iIidue7rLcdpiwBJn86mT4v9+HjnR+bjmJbKmRyYru+gM0fgsMJA+8ynUZEROrAabMpy8SYRNyWW2danoAW9cuJ5a32TlWedhk062g6jYiI1MHhQmaPRqZLKJ2cCpmc2Nk3QOfzTacQEZH68J9laTaGjwrZyamQycmltTOdQERE6sFO217A4UK2vWg7bo8bl9NlOJH9aA2ZHFvhd7B3vekUIiLSAHa5lqVPdtNs4pxxVHmq2FW6y3QcW1Ihk2P79E8wuz8setR0EhERqSe7rSFzOV3kpOYAmrY8Hk1ZytEKd8KXr3mPcwaZzSIiIvXmsNmUJcCQNkPonN6ZtIQ001FsSYVMjrbkCfDUQO4QaNvHdBoREYkAt595u+kItqYpS6mtZA98/nfv8eC7zWYRERGJEipkUtvSWeCuhLbnQM5A02lERCSC1Hhq2F603TZr2+xEhUwOK/sBVs3xHg+++/AiBBERkUaq9lTT75V+/Oydn3Gg/IDpOLajQiaHHdgIcU2gVU/odJ7pNCIiEkFinbG0SGoB6EzLY1Ehk8Pa94c71sLP52h0TEREAk479h+fCpnUFpeka1aKiEhQ5KblArC1UIXsx1TIBCpLYcO74PGYTiIiIhHMN0K2rWib4ST2o0Im3oX8r18Nr48xnURERCKYpiyPT4Us2lWXw7KnvMenXGQ2i4iIBJTddpfITfVOWe4v309JVYnhNPainfqj3Zp/QOleSG0Lp19pOo2IiASAw6YnZiXHJXN558tpntQcj6VlMkdSIYtmNVWweKb3eOCd4Io1mUZERALMbiNkAA/1f8h0BFvSlGU0W/saFH8PTbOg59Wm04iISIDYc3xMTkSFLFq5a2DRY97j/rdBbILZPCIiEnA2HCDDY3nIK81j/Q/rTUexFRWyaFW6FxLTIDEDel9nOo2IiASQTZeQAbBqzypG/GsEd396t+kotqI1ZNEqtTWM/wSKvvNeLklERCKOHS/i3SHNu/VFXmkele5K4l3xhhPZg0bIopnDAWntTKcQEZEAs/EAGc0SmpEcl4zH8rC9aLvpOLahQhZtLMu7EWxFkekkIiISJL5tL2w4QIbD4fDvR6Yd+w9TIYs2mz+EuXfBM/3AXW06jYiIBIHz0BCZZctl/dqx/1hUyKKJZcHC6d7j7pdr3zERkYjlbWQee/YxFbJjUCGLJtsWwvcrISYB+k0wnUZERILEP0KmQhY2dJZlNPGNjp15LSS3NJtFRESCxunwjZDZs5Gd2uxUbuxxI13Su5iOYhsqZNFi52ewfRE4Y6H/7abTiIhIEDn8I2T2LGQtklpwx5l3mI5hK5qyjBYLZ3g/9vw/SGtrNouIiASVb4TMnnVMjkUjZNHAXQ1JGeCKg4F3mU4jIiJB5hsh89h1VT9QUFHAxoKNpMalcmqzU03HMU4jZNHAFQuXPQ8TN0BGB9NpREQkyBwOe59lCfDaN68x/sPxvPLNK6aj2IIKWTRpkmk6gYiIhIDvLEu7LuoHyE3zbg6rMy29VMgi3ao5sH+T6RQiIhJCTjtfXfwQ39YX2wq32fbkg1BSIYtkP3wL702CZ/pCwQ7TaUREJER8dczOI2Q5KTk4HU5Kqks4UH7AdBzjVMgi2eLHwPJAp/Mhvb3pNCIiEiLhsIYszhVHm6ZtAE1bggpZ5CrcCV++5j0ePNlsFhERCSm779Tvox37D1Mhi1RLngBPDeQOgbZ9TKcREZEQsvtO/T7+hf2FKmTahywSFe+Gz//uPR58t9ksIiIScnbfqd/ngvYXkJOSQ4/MHqajGKdCFomWPQXuSmh7DuQMNJ1GRERCzLeGzOZ9jO6Z3eme2d10DFvQlGUkSs6CxHTv6FgYnPosIiKB5VtD5rZ7IxM/jZBFov63wVnXQVwT00lERMSAcPpd/Kv9X7EhfwP9s/vTJrmN6TjGaIQsUsU3Da+/kSIiEnDhMED2xJon+N1nv2PV3lWmoxilQhZJvngVNs4Lj7+BIiISNA7C5xdybX3hpUIWKSpL4IP74NUrYdM802lERMQGwuHX8yMvoRTNVMgixao5UF4AGR2h8wWm04iIiEH+FSthMGOiETIvFbJIUF0OS5/yHg+aBE6X2TwiIiJ1lJvq3Rz2+9LvqXRXGk5jjgpZJPj871C2D1Lbwem/MJ1GREQM8w+QGU1RN5mJmSTHJuOxPOwo3mE6jjEqZOGupgqWzPQeD7wDXLFG44iIiH2EwYwlDofj8CWUonjaUvuQhbsvX4XiPGiaBT2vNp1GRERswBFm2x7d0esOHA4Hp2ScYjqKMSpk4S6lNbTsDmf8H8QmmE4jIiI2YoXFpCX0adXHdATjVMjCXedh0Ok88NSYTiIiIjYTDlOW4qU1ZJHA4dDaMRER8QuzGUuq3dW8vfltHl/9OG6P23QcI1TIwtWmD2HpLKgsNZ1ERERsKlwGyJwOJ7//7PfMWTeHXaW7TMcxQoUsHFkWfDwVPrwfPnvGdBoREbGZcLp0EoDL6SInNQeI3jMtVcjC0eYPYc9XENcUzr7RdBoREbGpcFpDFu079quQhRvLgk+neY/PvgGSMszmERER2/GtIQuXsyxBhUyFLNxs+xTyVkFMAvSbYDqNiIjYUHhNWHpF++awKmThZuEM78czx0LTFmaziIiIvYXPAJl/hGxb4TascJprDRAVsnCyYxlsXwTOWBhwh+k0IiJiU+G27QVATkoOToeTkuoSDpQfMB0n5LQxbDhpkgndRkFiOqS2Np1GREQkYOJccfzlgr/QJrkNmYmZpuOEnApZOMnsDL/4G3g8ppOIiIgEXO+s3qYjGKMpy3Dk1NsmIiISSfSTPRzs/Rr+cxvkbzOdREREJGi+K/mOJz9/ktlfzDYdJeRUyMLBokfh85fgo4dMJxEREQmagooCXvjqBf656Z+mo4ScCpndHdgC69/yHg+aZDaLiIhIEOWmevci21e+j5KqEsNpQkuFzO4WPw6WB7qMgFanm04jIiISNMlxybRI9O6xua0oupbpqJDZWcEOWPua93jw3WaziIiIhEC07tivQmZnS54ATw10+Am0id5TgUVEJHpE6zUtVcjsqng3rPm791ijYyIi0gDheAGiIy+hFE20MaxdxSZ4L4+05ytoP8B0GhERCSOOQ9dOCsdrQvoK2fel3xtOEloqZHaVmA7n3g+WFZ4XJRMREWPC+afG6c1P5/3L3ie7SbbpKCGlQmZ3KmMiItJAYThARkJMAm2T25qOEXJaQ2Y35YXw8hXw7cfh+TdJRETM0+/yYUeFzG5WPA+bP4QP7lchExGRRgnXnyKf7PyEuz+9mzc3vWk6SsiokNlJZQl89oz3ePAkXURcREQaxBHmQ2Tbi7czb/s8VuxeYTpKyOgnvp2smgPlBdCsE3QbZTqNiIiEuXCdaInGvchUyOyiuhyWzvIeD5wITpfZPCIiErbC/XwwXyHbXrQdt8dtOE1oqJDZxecvQdl+SG0Hp//CdBoRERFjsptmE+eMo8pTxa7SXabjhIQKmR3UVHkvkwQw8E5wxRqNIyIiYpLL6SInNQeInmlLFTI7cDhh2EOQOwR6jjGdRkRExLhoW0emjWHtwBXjnabUVKWIiAjgLWQxjhiKq4pNRwkJFTIRERGxnbGnjeXG028k1hkdy3g0ZWmSxwMvjYLlz0F1hek0IiIitpEUmxQ1ZQxUyMza8B/Y+gl88jC4q0ynEREREUNUyEyxLFg4w3vc95eQkGI2j4iIiM08vvpxRs8dzeq9q01HCToVMlM2fQB7v4K4pt5CJiIiIrVsLdzK+h/Ws6lgk+koQadCZoJlwcLp3uOzb4CkDLN5REREbCg3LRfwFrNIp0Jmwtb/Qd4qiEmAfhNMpxEREbEl315k24q2GU4SfCpkJvjWjp01Dpq2MBpFRETErqJpc1gVMhMumAqn/gz63246iYiIiG3lpnqnLPeX76ekqsRwmuBSITOh9Vlw5T8gtbXpJCIiIraVHJdMi0TvTFKkT1tqp/5QsixwOEynEBERCRud0juREJNAWXWZ6ShBpUIWSv+6ERLTYdAkSGllOo2IiIjtzR42G6cj8if0Iv8V2sXe9bDun7Dyz1AZHRdKFRERaaxoKGOgQhY6ix71fuw2Epp3NZtFRESigoVlOoLUkQpZKBzYDOve8h4Pnmw2i4iIRDzfamUrAvrYweqDXPP+NQx5fQiV7krTcYJGhSwUFj8OWNDlp5DVw3QaERGJcJF0/lhiTCLfFn5LfkU+O4p3mI4TNCpkwVawA9a+7j3W6JiIiISAg8hpZA6H4/AllCJ4g1gVsmBbOgs8NdBhKLTpbTqNiIhEESsS5iw54hJKhZG7F5m2vQi2IfdAXJJ3ulJERCQEfFOWkVHHoG+rvrg9brpmRO5JcSpkwda0BZw/1XQKERGJIl2zkrn49FZ0b51qOkpAXNzhYi7ucLHpGEGlQiYiIhJhLj49m4tPzzYdQ+pBa8hEREREDFMhExERETFMhUxERETEMBUyEREREcNUyEREREQMUyETERERMUyFTERERMQwFTIRERERw1TIRERERAxTIRMRERExTIVMRERExDAVMhERERHDVMhEREREDFMhExERETFMhUxERETEMBUyEREREcNUyEREREQMUyETERERMUyFTERERMQwFTIRERERw1TIRERERAxTIRMRERExTIVMRERExDAVMhERERHDVMhEREREDFMhExERETFMhUxERETEMBUyEREREcNUyEREREQMUyETERERMUyFTERERMQwFTIRERERw1TIRERERAxTIRMRERExTIVMRERExDAVMhERERHDVMhEREREDFMhExERETEsxnQAO7AsC4Di4uKAPF51dTUHDx6kuLiY2NjYgDymNIzeC/vQe2Efei/sQ++FPfh+/vv6gAkqZEBJSQkAbdu2NZxERERETCkpKSE1NdXIczssk3XQJjweD7t27SI5ORmHw9HoxysuLqZt27Z89913pKSkBCChNJTeC/vQe2Efei/sQ++FPViWRUlJCdnZ2TidZlZzaYQMcDqdtGnTJuCPm5KSor9gNqH3wj70XtiH3gv70HthnqmRMR8t6hcRERExTIVMRERExDAVsiCIj4/nwQcfJD4+3nSUqKf3wj70XtiH3gv70HshPlrULyIiImKYRshEREREDFMhExERETFMhUxERETEMBUyEREREcNUyAJo+/bt3HDDDeTm5pKYmEjHjh158MEHqaqqqnW/tWvXMmjQIBISEmjbti3Tpk0zlDiyPfzww/Tv35+kpCTS0tKOeR+Hw3HUf6+99lpog0aBurwXO3fu5KKLLiIpKYkWLVpw9913U1NTE9qgUSgnJ+eovwN/+tOfTMeKGk8//TQ5OTkkJCTQt29fVqxYYTqSGKKd+gPom2++wePx8Nxzz9GpUyfWrVvH+PHjKSsrY8aMGYD3MhkXXHABw4YN49lnn+Wrr77i+uuvJy0tjZtuusnwK4gsVVVVXHHFFfTr14+//OUvx73fiy++yIgRI/yfH68wSMOd7L1wu91cdNFFZGVlsXTpUnbv3s21115LbGwsf/jDHwwkji5Tp05l/Pjx/s+Tk5MNpoker7/+OhMnTuTZZ5+lb9++zJw5k+HDh7Nx40ZatGhhOp6EmiVBNW3aNCs3N9f/+TPPPGOlp6dblZWV/q/de++9VteuXU3EiwovvviilZqaeszbAOvtt98OaZ5odrz34v3337ecTqe1Z88e/9dmz55tpaSk1Pq7IoHXvn176/HHHzcdIyr16dPHuvXWW/2fu91uKzs72/rjH/9oMJWYoinLICsqKiIjI8P/+bJlyxg8eDBxcXH+r/l+IyooKDARMerdeuutZGZm0qdPH+bMmYOlrflCbtmyZfTo0YOWLVv6vzZ8+HCKi4tZv369wWTR4U9/+hPNmjWjV69eTJ8+XVPFIVBVVcXq1asZNmyY/2tOp5Nhw4axbNkyg8nEFE1ZBtGWLVuYNWuWf7oSYM+ePeTm5ta6n++H0J49e0hPTw9pxmg3depUzj33XJKSkvjwww+55ZZbKC0t5fbbbzcdLars2bOnVhmD2n8vJHhuv/12zjzzTDIyMli6dCn33Xcfu3fv5rHHHjMdLaIdOHAAt9t9zD/333zzjaFUYpJGyOrgV7/61TEXfx/534//AuXl5TFixAiuuOKKWmszpHEa8l6cyJQpUxgwYAC9evXi3nvv5Z577mH69OlBfAWRI9DvhQROfd6biRMn8pOf/ITTTz+dX/7ylzz66KPMmjWLyspKw69CJLpohKwOJk2axLhx4054nw4dOviPd+3axdChQ+nfvz/PP/98rftlZWWxd+/eWl/zfZ6VlRWYwBGsvu9FffXt25ff/e53VFZW6tpyJxHI9yIrK+uos8v096LhGvPe9O3bl5qaGrZv307Xrl2DkE4AMjMzcblcx/x5oD/z0UmFrA6aN29O8+bN63TfvLw8hg4dyllnncWLL76I01l7ELJfv3785je/obq6mtjYWADmz59P165dNV1ZB/V5Lxriiy++ID09XWWsDgL5XvTr14+HH36Yffv2+c8umz9/PikpKXTr1i0gzxFNGvPefPHFFzidTp3lF2RxcXGcddZZLFiwgFGjRgHg8XhYsGABEyZMMBtOjFAhC6C8vDx+8pOf0L59e2bMmMH+/fv9t/l+47nqqqv47W9/yw033MC9997LunXreOKJJ3j88cdNxY5YO3fuJD8/n507d+J2u/niiy8A6NSpE02bNuXdd99l7969nHPOOSQkJDB//nz+8Ic/MHnyZLPBI9DJ3osLLriAbt26cc011zBt2jT27NnD/fffz6233qpyHETLli1j+fLlDB06lOTkZJYtW8Zdd93F1VdfrV8QQ2DixImMHTuW3r1706dPH2bOnElZWRnXXXed6WhigunTPCPJiy++aAHH/O9IX375pTVw4EArPj7eat26tfWnP/3JUOLINnbs2GO+F5988ollWZb13//+1+rZs6fVtGlTq0mTJtYZZ5xhPfvss5bb7TYbPAKd7L2wLMvavn279dOf/tRKTEy0MjMzrUmTJlnV1dXmQkeB1atXW3379rVSU1OthIQE69RTT7X+8Ic/WBUVFaajRY1Zs2ZZ7dq1s+Li4qw+ffpYn332melIYojDsnSOv4iIiIhJOstSRERExDAVMhERERHDVMhEREREDFMhExERETFMhUxERETEMBUyEREREcNUyEREREQMUyETERERMUyFTEQCYvv27TgcDv9lkepi3Lhx/uv4iX0MHjyYV155JWCP9/XXX9OmTRvKysoC9pgikUaFTMSmxo0bh8PhwOFwEBcXR6dOnZg6dSo1NTV1+v6//vWvpKWlBS3bj4tU27Zt2b17N927dw/Y8wTzNdhNQwptMPznP/9h7969jB492v+1jRs3MmDAANq0acPvf//7o75nzZo1XHHFFbRs2ZKEhAQ6d+7M+PHj2bRpEwDdunXjnHPO4bHHHgvZ6xAJNypkIjY2YsQIdu/ezebNm5k0aRIPPfQQ06dPNx3rmFwuF1lZWcTExJiOYitVVVVh9ZxPPvkk1113HU7n4R8PEyZM4Oqrr+bf//43//73v1m6dKn/trlz53LOOedQWVnJyy+/zIYNG/jHP/5BamoqU6ZM8d/vuuuuY/bs2XX+hUIk6pi+mKaIHNvYsWOtkSNH1vra+eefb51zzjmWZVlWfn6+dc0111hpaWlWYmKiNWLECGvTpk2WZVnWJ598ctSFvB988EHLsiyroqLCmjRpkpWdnW0lJSVZffr0qXWR7xdffNFKTU215s2bZ51yyilWkyZNrOHDh1u7du2yLMuyHnzwwWNeJHzbtm0WYK1Zs8ayLMuqqamxrr/+eisnJ8dKSEiwunTpYs2cOfOkr9EnEK/h3Xfftbp06WIlJiZal19+uVVWVmb99a9/tdq3b2+lpaVZt912m1VTU+P/vvbt21tTp061Ro8ebSUlJVnZ2dnWU089VStXQUGBdcMNN1iZmZlWcnKyNXToUOuLL77w3/7ggw9aZ5xxhvXCCy9YOTk5lsPhsCzLezH7AQMGWKmpqVZGRoZ10UUXWVu2bPF/349f65AhQyzLsqwhQ4ZYd9xxR60MI0eOtMaOHXtU7muuucZKTk7237Zo0SJr4MCBVkJCgtWmTRvrtttus0pLS4/5/9uyLGvfvn2Ww+Gw1q1bV+vrZ511lrV8+XKrqqrKuuSSS6z33nvPsizLKisrszIzM61Ro0Yd8/EKCgr8x5WVlVZ8fLz10UcfHff5RaKZRshEwkhiYqJ/9GPcuHGsWrWK//znPyxbtgzLsrjwwguprq6mf//+zJw5k5SUFHbv3s3u3buZPHky4B3tWLZsGa+99hpr167liiuuYMSIEWzevNn/PAcPHmTGjBn8/e9/Z+HChezcudP//ZMnT+YXv/iFf/Ru9+7d9O/f/6isHo+HNm3a8Oabb/L111/zwAMP8Otf/5o33nijTq81EK/hySef5LXXXmPevHn873//49JLL+X999/n/fff5+9//zvPPfcc//znP2s97/Tp0znjjDNYs2YNv/rVr7jjjjuYP3++//YrrriCffv28d///pfVq1dz5plnct5555Gfn++/z5YtW/jXv/7FW2+95Z+CLCsrY+LEiaxatYoFCxbgdDq59NJL8Xg8AKxYsQKAjz76iN27d/PWW2/V6f+Tz4wZM/y5p0yZwrfffsuIESO4/PLLWbt2La+//jqLFy9mwoQJx32MxYsXk5SUxKmnnlrr61OnTmXYsGEkJSXhdDoZPnw4AB988AEHDhzgnnvuOebjHTndHBcXR8+ePVm0aFG9XpdI1DDdCEXk2I4cPfJ4PNb8+fOt+Ph4a/LkydamTZsswFqyZIn//gcOHLASExOtN954w7Ksw6NER9qxY4flcrmsvLy8Wl8/77zzrPvuu8//fUCt0Zunn37aatmy5TGz+fx4hOxYbr31Vuvyyy8/4eMcKZCv4eabb7aSkpKskpIS/9eGDx9u3Xzzzf7P27dvb40YMaLW41555ZXWT3/6U8uyvCNOKSkpVkVFRa37dOzY0Xruuecsy/KOkMXGxlr79u077uuyLMvav3+/BVhfffWVZVnH//9X1xGyH49S3XDDDdZNN91U62uLFi2ynE6nVV5efsxMjz/+uNWhQ4dj3lZRUXHUa3rkkUcswMrPzz/ey6zl0ksvtcaNG1en+4pEGy32ELGxuXPn0rRpU6qrq/F4PFx11VU89NBDLFiwgJiYGPr27eu/b7NmzejatSsbNmw47uN99dVXuN1uunTpUuvrlZWVNGvWzP95UlISHTt29H/eqlUr9u3bV+/8Tz/9NHPmzGHnzp2Ul5dTVVVFz5496/04R2roa2jZsiU5OTk0bdq01td+/Lr69et31OczZ84E4Msvv6S0tLTW8wCUl5fz7bff+j9v3749zZs3r3WfzZs388ADD7B8+XIOHDjgHxnbuXNnQE6E6N27d63Pv/zyS9auXcvLL7/s/5plWXg8HrZt23bUKJjvdSQkJBzz8ePj4496TZZl1StjYmIiBw8erNf3iEQLFTIRGxs6dCizZ88mLi6O7OzsRi+YLy0txeVysXr1alwuV63bjiwqsbGxtW5zOBz1/uH72muvMXnyZB599FH69etHcnIy06dPZ/ny5Q1/ATTuNRzra75iVNfnbtWqFf/73/+Ouu3I6bkmTZocdfvPfvYz2rdvzwsvvEB2djYej4fu3bufdAG+0+k86v99dXX1Uff78XOWlpZy8803c/vttx9133bt2h3zuTIzMykoKDhhniP5SvE333xzVJE9lvz8/FolWUQOUyETsbEmTZrQqVOno75+6qmnUlNTw/Lly/3rt3744Qc2btxIt27dAO+aHbfbXev7evXqhdvtZt++fQwaNKjBuY712D+2ZMkS+vfvzy233OL/2pGjSA19nkC9huP57LPPjvrcN5p05plnsmfPHmJiYsjJyanzY/remxdeeMGfefHixbXuExcXB3DU623evDm7d+/2f+52u1m3bh1Dhw494XOeeeaZfP3118f883M8vXr1Ys+ePRQUFJCenn7S+19wwQVkZmYybdo03n777aNuLywsrFVU161bx89//vM65xGJJlrULxKGOnfuzMiRIxk/fjyLFy/myy+/5Oqrr6Z169aMHDkSgJycHEpLS1mwYAEHDhzg4MGDdOnShTFjxnDttdfy1ltvsW3bNlasWMEf//hH3nvvvTo/f05ODmvXrmXjxo0cOHDgmCM2nTt3ZtWqVXzwwQds2rSJKVOmsHLlynq9zmC+huNZsmQJ06ZNY9OmTTz99NO8+eab3HHHHQAMGzaMfv36MWrUKD788EO2b9/O0qVL+c1vfsOqVauO+5jp6ek0a9aM559/ni1btvDxxx8zceLEWvdp0aIFiYmJzJs3j71791JUVATAueeey3vvvcd7773HN998w//7f/+PwsLCk76Oe++9l6VLlzJhwgS++OILNm/ezL///e8TLurv1asXmZmZLFmypA7/p7y/MPz5z3/mvffe45JLLuGjjz5i+/btrFq1invuuYdf/vKX/vtu376dvLw8hg0bVqfHFok2KmQiYerFF1/krLPO4uKLL6Zfv35YlsX777/vn5br378/v/zlL7nyyitp3rw506ZN83/ftddey6RJk+jatSujRo1i5cqVx53GOpbx48fTtWtXevfuTfPmzY/5A/zmm2/msssu48orr6Rv37788MMPtUbL6iKYr+F4Jk2axKpVq+jVqxe///3veeyxx/xnFTocDt5//30GDx7MddddR5cuXRg9ejQ7duygZcuWx31Mp9PJa6+9xurVq+nevTt33XXXUfvJxcTE8OSTT/Lcc8+RnZ3tL9bXX389Y8eO5dprr2XIkCF06NDhpKNjAKeffjqffvopmzZtYtCgQfTq1YsHHniA7Ozs436Py+Xiuuuuq7Xu7GRGjhzJ0qVLiY2N5aqrruKUU07h//7v/ygqKqq1ieyrr77KBRdcQPv27ev82CLRxGHVd2GIiEiEysnJ4c477+TOO+80HcWYPXv2cNppp/H5558HrDxVVVXRuXNnXnnlFQYMGBCQxxSJNBohExERv6ysLP7yl7+wc+fOgD3mzp07+fWvf60yJnICWtQvIiK1BPqC7506darXyQUi0UhTliIiIiKGacpSRERExDAVMhERERHDVMhEREREDFMhExERETFMhUxERETEMBUyEREREcNUyEREREQMUyETERERMez/Ay927QhUIrj2AAAAAElFTkSuQmCC\n", "text/plain": "
" }, "metadata": {}, "output_type": "display_data" } ] } }, "c5339e1b01bd4f8ca0de25a40365079b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_9de86c1a8e0c4d85bad1bdfd8ac657ac", "IPY_MODEL_90e18a6ad99e4b519a1abbda1ff1ef16" ], "layout": "IPY_MODEL_a05d1c7c3b03441a82673893e305a2f6" } }, "ccee0254fa7943d98fe6de5db310093b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d1e63588b6584df7aa49671bd6ed3fb8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "LabelModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "LabelModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "LabelView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ab129b4e736c44239809c56d9c9f525d", "placeholder": "​", "style": "IPY_MODEL_435aba90571e4104bedc378ca3afaf58", "value": "Select a date" } }, "df195cad0ef640beb4c1a7364f930f82": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "eebc3570a05b44b3be5b5ffc77b542c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f88447dbe91645ac904cb798d1ba6559": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DropdownModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DropdownModel", "_options_labels": [ "2024-01-12 00:33:00+00:00", "2024-01-13 05:40:20+00:00", "2024-01-18 05:14:20+00:00", "2024-01-23 05:36:20+00:00", "2024-01-28 05:25:20+00:00", "2024-02-02 05:35:20+00:00", "2024-02-07 05:39:20+00:00", "2024-02-12 05:31:20+00:00" ], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "DropdownView", "description": "", "description_tooltip": null, "disabled": false, "index": 0, "layout": "IPY_MODEL_376151c41dbd43eabbf6152d365bdb62", "style": "IPY_MODEL_83dca114fd304f86a4cb83b8d8d6a7de" } } } } }, "nbformat": 4, "nbformat_minor": 0 }